Synlett 2020; 31(02): 102-116
DOI: 10.1055/s-0039-1691501
synpacts
© Georg Thieme Verlag Stuttgart · New York

Modifying Positional Selectivity in C–H Functionalization Reactions with Nitrogen-Centered Radicals: Generalizable Approaches to 1,6-Hydrogen-Atom Transfer Processes

Melanie A. Short
,
J. Miles Blackburn
,
The National Institutes of Health (National Institute of General Medical Sciences; R35GM128741-01) funds research documenting sulfamate ester reactivity, and has supported the development of this manuscript.
Further Information

Publication History

Received: 24 October 2019

Accepted after revision: 11 November 2019

Publication Date:
27 November 2019 (online)


Dedicated to Prof. Brian M. Stoltz as an early celebration of his 50th birthday

Abstract

Nitrogen-centered radicals are powerful reaction intermediates owing in part to their ability to guide position-selective C(sp3)–H functionalization reactions. Typically, these reactive species dictate the site of functionalization by preferentially engaging in 1,5-hydrogen-atom transfer (1,5-HAT) processes. Broadly relevant approaches to alter the site-selectivity of HAT pathways would be valuable because they could be paired with a variety of tactics to install diverse functional groups. Yet, until recently, there have been no generalizable strategies to modify the position-selectivity observed in these HAT processes. This Synpacts article reviews transformations in which nitrogen-centered radicals preferentially react through 1,6-HAT pathways. Specific attention will be focused on strategies that employ alcohol- and amine-anchored sulfamate esters and sulfamides as templates to achieve otherwise rare γ-selective functionalization reactions.

1 Introduction

2 Transformations that Rely on Structural Constraints or Weakened C–H Bonds to Favor 1,6-HAT Processes

3 Sulfamate Esters Engage Selective 1,6-HAT Processes

4 Expansion to 1,6-HAT Processes with Masked Amine Substrates

5 Conclusions and Outlook

 
  • References


    • For select reviews on C–H functionalization, see:
    • 1a Bergman RG. Nature 2007; 446: 391
    • 1b Davies HM. L, Manning JR. Nature 2008; 451: 417
    • 1c Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
    • 1d White MC. Science 2012; 335: 807
    • 1e He J, Wasa M, Chan KS. L, Shao Q, Yu J.-Q. Chem. Rev. 2017; 117: 8754
    • 1f Chu JC. K, Rovis T. Angew. Chem. Int. Ed. 2018; 57: 62
    • 1g Karimov RR, Hartwig JF. Angew. Chem. Int. Ed. 2018; 57: 4234
  • 2 For a recent perspective, see: Yan M, Lo JC, Edwards JT, Baran PS. J. Am. Chem. Soc. 2016; 138: 12692

    • For reviews focusing on the generation and use of nitrogen-centered radicals, see:
    • 3a Zard SZ. Chem. Rev. 2008; 108: 1603
    • 3b Kärkäs MD. ACS Catal. 2017; 7: 4999
    • 3c Kärkäs MD. Chem. Soc. Rev. 2018; 47: 5786

      For recent, elegant innovations surrounding nitrogen-centered radicals in intermolecular C–H functionalization, see:
    • 4a Schmidt VA, Quinn RK, Brusoe AT, Alexanian EJ. J. Am. Chem. Soc. 2014; 136: 14389
    • 4b Quinn R, Könst Z, Michalak S, Schmidt Y, Szklarski A, Flores A, Nam S, Horne D, Vanderwal C, Alexanian EJ. J. Am. Chem. Soc. 2016; 138: 696
    • 4c Czaplyski WL, Na CG, Alexanian EJ. J. Am. Chem. Soc. 2016; 138: 13854
    • 4d Carestia AM, Ravelli D, Alexanian EJ. Chem. Sci. 2018; 9: 5360
    • 4e Tierney MM, Crespi S, Ravelli D, Alexanian EJ. J. Org. Chem. 2019; 84: 12983

      For a discussion of the fundamentals of HAT, see:
    • 5a Mayer JM. Acc. Chem. Res. 2011; 44: 36
    • 5b Capaldo L, Ravelli D. Eur. J. Org. Chem. 2017; For a recent review elaborating on the utility of HAT, see: 2056
  • 6 For a review of selective hydrogen-atom transfer, see: Stateman LM, Nakafuku KM, Nagib DA. Synthesis 2018; 50: 1569

    • For computational analyses of intramolecular HAT mediated by alkoxyl radicals, see:
    • 7a Dorigo AE, Houk KN. J. Am. Chem. Soc. 1987; 109: 2195
    • 7b Dorigo AE, Houk KN. J. Org. Chem. 1988; 53: 1650
    • 7c Dorigo AE, McCarrick MA, Loncharich RJ, Houk KN. J. Am. Chem. Soc. 1990; 112: 7508
    • 7d Zou Y, Xue X.-S, Deng Y, Smith AB, Houk KN. Org. Lett. 2019; 21: 5894
  • 8 Beckwith AL. J, Ingold KU. In Rearrangements in Ground and Excited States . Vol. 1. DeMayo P. Academic Press; New York: 1980: 251
    • 9a Hofmann AW. Ber. Dtsch. Chem. Ges. 1883; 16: 558
    • 9b Löffler K, Freytag C. Ber. Dtsch. Chem. Ges. 1909; 42: 3427

      For the seminal disclosure, see:
    • 10a De Armas P, Carrau R, Concepción JI, Francisco CG, Hernández R, Suárez E. Tetrahedron Lett. 1985; 26: 2493

    • For further investigations and applications, see:
    • 10b Carrau R, Hernández R, Suárez E, Betancor C. J. Chem. Soc., Perkin Trans. 1 1987; 937
    • 10c Dorta RL, Francisco CG, Suárez E. J. Chem. Soc., Chem. Commun. 1989; 1168
    • 10d Francisco CG, Herrera AJ, Suárez E. J. Org. Chem. 2003; 68: 1012
    • 11a Matínez C, Muñiz K. Angew. Chem. Int. Ed. 2015; 54: 8287
    • 11b Qin Q, Yu S. Org. Lett. 2015; 17: 1894
    • 11c Choi GJ, Zhu Q, Miller DX, Gu CJ, Knowles RR. Nature 2016; 539: 268
    • 11d Chu JC. K, Rovis T. Nature 2016; 539: 272
    • 11e Wappes EA, Fosu SC, Chopko TC, Nagib DA. Angew. Chem. Int. Ed. 2016; 55: 9974
    • 11f Chen D.-F, Chu JC. K, Rovis T. J. Am. Chem. Soc. 2017; 139: 14897
    • 11g Hu X, Zhang G, Bu X, Nie L, Lei A. ACS Catal. 2018; 8: 9370
    • 11h Wang F, Stahl SS. Angew. Chem. Int. Ed. 2019; 58: 6385
    • 11i Nikolaienko P, Jentsch M, Kale AP, Cai Y, Rueping M. Chem. Eur. J. 2019; 25: 7177
  • 12 Corey EJ, Hertler WR. J. Am. Chem. Soc. 1960; 82: 1657
  • 13 For a review of 1,n-HAT processes where n ≠ 5, see: Nechab M, Mondal S, Bertrand MP. Chem. Eur. J. 2014; 20: 16034
    • 15a Wang Y.-F, Chen H, Zhu X, Chiba S. J. Am. Chem. Soc. 2012; 134: 11980
    • 15b Chen H, Sanjaya S, Wang Y.-F, Chiba S. Org. Lett. 2013; 15: 212
    • 16a Wawzonek S, Thelen PJ. J. Am. Chem. Soc. 1950; 72: 2118
    • 16b Wawzonek S, Nelson Jr MF, Thelen JP. J. Am. Chem. Soc. 1951; 73: 2806
    • 17a Hernández R, Medina MC, Salazar JA, Suárez E. Tetrahedron Lett. 1987; 28: 2533
    • 17b Freire R, Martín A, Pérez-Martín I, Suárez E. Tetrahedron Lett. 2002; 43: 5113
    • 17c Francisco CG, Herrera AJ, Martín Á, Pérez-Martín I, Suárez E. Tetrahedron Lett. 2007; 48: 6384
  • 18 Wolff ME. Chem. Rev. 1963; 63: 55
  • 19 Neale RS, Walsh MR, Marcus NL. J. Org. Chem. 1965; 30: 3683
  • 20 Chen K, Richter JM, Baran PS. J. Am. Chem. Soc. 2008; 130: 7247
  • 21 Hennessy ET, Betley TA. Science 2013; 340: 591
  • 22 Zhang Z, Stateman LM, Nagib DA. Chem. Sci. 2019; 10: 1207
  • 23 Morcillo SP, Dauncey EM, Kim JH, Douglas JJ, Sheikh NS, Leonori D. Angew. Chem. Int. Ed. 2018; 57: 12945

    • For a seminal report, see:
    • 24a Espino CG, When PM, Chow J, Du Bois J. J. Am. Chem. Soc. 2001; 123: 6935
    • 24b For mechanistic insights, see: Fiori KW, Espino CG, Brodsky BH, Du Bois J. Tetrahedron 2009; 65: 3042

      For select innovations of C−H amination reactions using sulfamate esters, see:
    • 25a Milczek E, Boudet N, Blakey S. Angew. Chem. Int. Ed. 2008; 47: 6825
    • 25b Liu Y, Guan X, Wong EL.-M, Liu P, Huang J.-S, Che C.-M. J. Am. Chem. Soc. 2013; 135: 7194
    • 25c Alderson JM, Phelps AM, Scamp RJ, Dolan NS, Schomaker JM. J. Am. Chem. Soc. 2014; 136: 16720
    • 25d Paradine SM, Griffin JR, Zhao J, Petronico AL, Miller SM, White MC. Nat. Chem. 2015; 7: 987

    • For reviews discussing the use of sulfamate esters in position-selective amination technologies, see:
    • 25e Collett F, Dodd RH, Dauban P. Chem. Commun. 2009; 5061
    • 25f Roizen JL, Harvey ME, Du Bois J. Acc. Chem. Res. 2012; 45: 911
  • 26 For an early example of metal-mediated, HLF-type reaction with sulfamate esters, see: Zalatan DN, Du Bois J. Synlett 2009; 143

    • For rare examples of directed γ-C–H functionalization reactions of alcohol derivatives, see:
    • 27a Kasuya S, Kamijo S, Inoue M. Org. Lett. 2009; 11: 3630
    • 27b Voica A.-F, Medoza A, Gutekunst WR, Fraga JO, Baran PS. Nat. Chem. 2012; 4: 629
    • 27c Simmons EM, Hartwig JF. Nature 2012; 483: 70
    • 27d Parasram M, Cheuntragool P, Shi Y, Gevorgyan V. J. Am. Chem. Soc. 2017; 139: 12857
    • 27e Tanaka K, Ewing WR, Yu J.-Q. J. Am. Chem. Soc. 2019; 141: 15494
  • 28 Short MA, Blackburn JM, Roizen JL. Angew. Chem. Int. Ed. 2018; 57: 296
    • 29a Cismesia MA, Yoon TP. Chem. Sci. 2015; 6: 5426
    • 29b Hatchard CG, Parker CA. Proc. R. Soc. London, Ser. A 1956; 235: 518

      For some pioneering examples, see:
    • 30a Barton DH. R, Beaton JM, Geller LE, Pechet MM. J. Am. Chem. Soc. 1960; 82: 2640
    • 30b Minisci F, Galli R, Galli A, Bernardi A. Tetrahedron Lett. 1967; 2207
    • 30c Deno NC, Fishbein JR, Wyckoff JC. J. Am. Chem. Soc. 1971; 93: 2065
    • 30d Breslow R, Heyer D. J. Am. Chem. Soc. 1982; 104: 2045

    • For select modern approaches, see:
    • 30e Liu W, Groves JT. J. Am. Chem. Soc. 2010; 132: 12847
    • 30f Liu W, Groves JT. Acc. Chem. Res. 2015; 48: 1727
    • 30g Ozawa J, Kanai M. Org. Lett. 2017; 19: 1430
  • 31 Blackburn JM, Short MA, Castanheiro T, Ayer SK, Muellers TD, Roizen JL. Org. Lett. 2017; 19: 6012
    • 32a Sathyamoorthi S, Banerjee S, Du Bois J, Burns NZ, Zare RN. Chem. Sci. 2018; 9: 100
    • 32b Control reactions excluding catalyst in the presence of light gave modest amounts of product, suggesting that light-mediated N–Br homolysis may be operative.
  • 33 Del Castillo E, Martínez MD, Bosnidou AE, Duhamel T, O’Broin CQ, Zhang H, Escudero-Adán EC, Martínez-Belmonte M, Muñiz K. Chem. Eur. J. 2018; 24: 17225
  • 34 Kiyokawa K, Nakamura S, Jou K, Iwaida K, Minakata S. Chem. Commun. 2019; 55: 11782

    • For sulfamate ester-directed C–H xanthylation reactions, see:
    • 35a Ayer SK, Roizen JL. J. Org. Chem. 2019; 84: 3508

    • For prior art featuring xanthate-transfer processes, see:
    • 35b Na CG, Alexanian EJ. Angew. Chem. Int. Ed. 2018; 57: 13106
    • 35c Sato A, Yorimitsu H, Oshima K. Chem. Asian J. 2007; 2: 1568
    • 36a Ollivier C, Renaud P. J. Am. Chem. Soc. 2000; 122: 6496
    • 36b Ollivier C, Renaud P. J. Am. Chem. Soc. 2001; 123: 4717
    • 36c Bertrand F, Quiclet-Sire B, Zard SZ. Angew. Chem. Int. Ed. 1999; 38: 1943
    • 36d Quiclet-Sire B, Seguin S, Zard SZ. Angew. Chem. Int. Ed. 1998; 37: 2864
    • 36e Spiegel DA, Wilberg KB, Schacherer LN, Medeiros MR, Wood JL. J. Am. Chem. Soc. 2005; 127: 12513
    • 36f Soulard V, Villa G, Vollmar DP, Renaud P. J. Am. Chem. Soc. 2018; 140: 155

      For select reviews on photoredox catalysis, see:
    • 37a McAtee RC, McClain EJ, Stephenson CR. J. Trends Chem. 2019; 1: 111
    • 37b Romer NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 37c Schultz DM, Yoon TP. Science 2014; 343: 1239176
    • 37d Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 37e Xuan J, Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 6828
    • 37f Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
    • 38a Ma Z.-Y, Guo L.-N, You Y, Yang F, Hu M, Duan X.-H. Org. Lett. 2019; 21: 5500
    • 38b Kanegusuku AL. G, Castanheiro T, Ayer SK, Roizen JL. Org. Lett. 2019; 21: 6089
    • 38c Shu W, Zhang H, Huang Y. Org. Lett. 2019; 21: 6107

      For the seminal disclosures of the Giese reaction, see:
    • 39a Giese B, Meixner J. Chem. Ber. 1981; 114: 2138
    • 39b Minisci F, Pallini U. Gazz. Chim. Ital. 1961; 91: 1030

    • For leading reviews regarding the addition of carbon centered radicals to alkenes, see:
    • 39c Giese B. Angew. Chem. Int. Ed. Engl. 1980; 22: 753
    • 39d Zhang W. Tetrahedron 2001; 57: 7237
    • 39e Srikanth GS. C, Castle SL. Tetrahedron 2005; 61: 10377
  • 40 Capacci AG, Malinowski JT, McAlpine NJ, Kuhne J, MacMillan DW. C. Nat. Chem. 2017; For a previous example, see: 9: 1073
  • 41 Slight variations on the discussed pathways could be envisioned if radical cation intermediates are formed in lieu of the proposed neutral nitrogen-radical species.
  • 42 For a review on PCET, see: Yayla HG, Knowles RR. Synlett 2014; 25: 2819
    • 43a Fraiji LK, Hayes DM, Werner TC. J. Chem. Educ. 1992; 69: 424
    • 43b Hopkinson MN, Gómez-Suárez A, Teders M, Sahoo B, Glorius F. Angew. Chem. Int. Ed. 2016; 55: 4361
  • 44 Use of an enantioenriched sulfamate ester substrate was found to deliver racemic C(3) alkylated product. Recovered starting material, however, was isolated with no detectable erosion in enantioenrichment. For specific details, see ref. 38b.
  • 45 Kurokawa T, Kim M, Du Bois J. Angew. Chem. Int. Ed. 2009; 48: 2777
    • 46a For a review that discusses γ-C–H functionalization reactions of amine derivatives, see: Xu Y, Dong G. Chem. Sci. 2018; 9: 1424

    • For additional γ C–H functionalization reactions of amine derivatives, see:
    • 46b Zaitsev VG, Shabashov D, Daugulis O. J. Am. Chem. Soc. 2005; 27: 3154
    • 46c Callela J, Pla D, Gorma TW, Domingo V, Haffemayer B, Gaunt MJ. Nat. Chem. 2015; 7: 1009
    • 46d Xu Y, Young MC, Wang C, Magness DM, Dong G. Angew. Chem. Int. Ed. 2016; 55: 9084
    • 46e Wu Y, Chen Y.-Q, Liu T, Eastgate MD, Yu J.-Q. J. Am. Chem. Soc. 2016; 138: 14554
    • 46f Liu Y, Ge H. Nat. Chem. 2017; 9: 26
    • 46g Yada A, Liao W, Sato Y, Murakami M. Angew. Chem. Int. Ed. 2017; 56: 1073

      For the seminal report, see:
    • 47a Lu H, Jiang H, Wojtas L, Zhang XP. Angew. Chem. Int. Ed. 2010; 49: 10192

    • For extensions transforming other types of C–H bonds, see:
    • 47b Lu H, Jiang H, Hu Y, Wojtas L, Zhang XP. Chem. Sci. 2011; 2: 2361
    • 47c Lu H, Hu Y, Jiang H, Wojtas L, Zhang XP. Org. Lett. 2012; 14: 5158
    • 47d Lu H, Li C, Jiang H, Lizardi CL, Zhang XP. Angew. Chem. Int. Ed. 2014; 53: 7028
    • 47e For an enantioselective variant, see: Li C, Lang K, Lu H, Hu Y, Cui Z, Wojtas L, Zhang XP. Angew. Chem. Int. Ed. 2018; 57: 16837
  • 48 Duhamel T, Martínez MD, Sideri IK, Muñiz K. ACS Catal. 2019; 9: 7741
  • 49 Short MA, Shehata MF, Sanders MA, Roizen JL. Chem. Sci. 2019; advance article; DOI: 10.1039/C9SC03428E.
  • 50 Shehata MF, Short MA, Sanders MA, Roizen JL. Tetrahedron 2019; 75: 3186