Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2021; 32(15): 1555-1559
DOI: 10.1055/s-0040-1705943
DOI: 10.1055/s-0040-1705943
cluster
Modern Nickel-Catalyzed Reactions
Decarbonylative Synthesis of Aryl Nitriles from Aromatic Esters and Organocyanides by a Nickel Catalyst
This work was supported by JSPS KAKENHI Grant Number JP19H02726 (to J.Y.), JP20H04829 (hybrid catalysis), and JP19K15573 (to K.M.).
Abstract
A decarbonylative cyanation of aromatic esters with aminoacetonitriles in the presence of a nickel catalyst was developed. The key to this reaction was the use of a thiophene-based diphosphine ligand, dcypt, permitting the synthesis of aryl nitrile without the generation of stoichiometric metal- or halogen-containing chemical wastes. A wide range of aromatic esters, including hetarenes and pharmaceutical molecules, can be converted into aryl nitriles.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1705943.
- Supporting Information
Publication History
Received: 24 August 2020
Accepted after revision: 17 September 2020
Article published online:
16 October 2020
© 2020. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Fleming FF, Wang Q. Chem. Rev. 2003; 103: 2035
- 1b Fleming FF, Yao L, Ravikumar PC, Funk L, Shook BC. J. Med. Chem. 2010; 53: 7902
- 2a Ellis GP, Romney-Alexander TM. Chem. Rev. 1987; 87: 779
- 2b Anbarasan P, Schareina T, Beller M. Chem. Soc. Rev. 2011; 40: 5049
- 2c Wen Q, Jin J, Zhang L, Luo Y, Lu P, Wang Y. Tetrahedron Lett. 2014; 55: 1271
- 2d Yan G, Zhang Y, Wang J. Adv. Synth. Catal. 2017; 359: 4068
- 3a Sakamoto T, Ohsawa K. J. Chem. Soc., Perkin Trans. 1 1999; 2323
- 3b Jia X, Yang D, Zhang S, Cheng J. Org. Lett. 2009; 11: 4716
- 4a Maligres PE, Waters MS, Fleitz F, Askin D. Tetrahedron Lett. 1999; 40: 8193
- 4b Chidambaram R. Tetrahedron Lett. 2004; 45: 1441
- 4c Jensen RS, Gajare AS, Toyota K, Yoshifuji M, Ozawa F. Tetrahedron Lett. 2005; 46: 8645
- 4d Littke A, Soumeillant M, Kaltenbach RF, Cherney RJ, Tarby CM, Kiau S. Org. Lett. 2007; 9: 1711
- 4e Martin MT, Liu B, Cooley BE. Jr, Eaddy JF. Tetrahedron Lett. 2007; 48: 2555
- 4f Buono FG, Chidambaram R, Mueller RH, Waltermire RE. Org. Lett. 2008; 10: 5325
- 5a Takagi K, Okamoto T, Sakakibara Y, Oka A. Chem. Lett. 1973; 471
- 5b Sakakibara Y, Okuda F, Shimobayashi A, Kirino K, Sakai M, Uchino N, Takagi K. Bull. Chem. Soc. Jpn. 1988; 61: 1985
- 5c Percec V, Bae J.-Y, Hill DH. J. Org. Chem. 1995; 60: 6895
- 5d Anderson BA, Bell EC, Ginah FO, Harn NK, Pagh LM, Wepsiec JP. J. Org. Chem. 1998; 63: 8224
- 5e Yang C, Williams JM. Org. Lett. 2004; 6: 2837
- 5f Cristau H.-J, Ouali A, Spindler J.-F, Taillefer M. Chem. Eur. J. 2005; 11: 2483
- 6a Chatani N, Hanafusa T. J. Org. Chem. 1986; 51: 4714
- 6b Sundermeier M, Mutyala S, Zapf A, Spannenberg A, Beller M. J. Organomet. Chem. 2003; 684: 50
- 7a Schareina T, Zapf A, Beller M. Chem. Commun. 2004; 1388
- 7b Mariampillai B, Alliot J, Li M, Lautens M. J. Am. Chem. Soc. 2007; 129: 15372
- 7c Yeung PY, So CM, Lau CP, Kwong FY. Angew. Chem. Int. Ed. 2010; 49: 8918
- 7d Senecal TD, Shu W, Buchwald SL. Angew. Chem. Int. Ed. 2013; 52: 10035
- 8a Kim J, Kim HJ, Chang S. Angew. Chem. Int. Ed. 2012; 51: 11948
- 8b Nauth AM, Opatz T. Org. Biomol. Chem. 2019; 17: 11
- 8c Luo F.-H, Chu C.-I, Cheng C.-H. Organometallics 1998; 17: 1025
- 8d Wen Q, Jin J, Hu B, Lu P, Wang Y. RSC Adv. 2012; 2: 6167
- 8e Yu P, Morandi M. Angew. Chem. Int. Ed. 2017; 56: 15693
- 8f Ueda Y, Tsujimoto N, Yurino T, Tsurugi H, Mashima K. Chem. Sci. 2019; 10: 994
- 8g Jiang Z, Huang Q, Chen S, Long L, Zhou X. Adv. Synth. Catal. 2012; 354: 589
- 8h Zheng S, Yu C, Shen Z. Org. Lett. 2012; 14: 3644
- 8i Jiang X, Wang J.-M, Zhang Y, Chen Z, Zhu Y.-M, Ji S.-J. Tetrahedron 2015; 71: 4883
- 8j Chen H, Sun S, Liu YA, Liao X. ACS Catal. 2020; 10: 1397
- 9a Gan Y, Wang G, Xie X, Liu Y. J. Org. Chem. 2018; 83: 14036
- 9b Xu W, Xu Q, Li J. Org. Chem. Front. 2015; 2: 231
- 10 Kotani S, Sakamoto M, Osakama K, Nakajima M. Eur. J. Org. Chem. 2015; 6606
- 11 Takise R, Itami K, Yamaguchi J. Org. Lett. 2016; 18: 4428
- 12 Wang L, Wang Y, Shen J, Chen Q, He M.-Y. Org. Biomol. Chem. 2018; 16: 4816
- 13a Takise R, Muto K, Yamaguchi J. Chem. Soc. Rev. 2017; 46: 5864
- 13b Shi S, Nolan SP, Szostak M. Acc. Chem. Res. 2018; 51: 2589
- 13c Guo L, Rueping M. Chem. Eur. J. 2018; 24: 7794
- 13d Lu H., Yu T.-Y., Xu P.-F., Wei H.; Chem. Rev.; 2020, in press; DOI: 10.1021/acs.chemrev.0c00153
- 14a Chatani N, Tatamidani H, Ie Y, Kakiuchi F, Murai S. J. Am. Chem. Soc. 2001; 123: 4849
- 14b Gooßen LJ, Paetzold J. Angew. Chem, Int. Ed. 2002; 41: 1237
- 14c Gooßen LJ, Paetzold J. Angew. Chem. Int. Ed. 2004; 43: 1095
- 14d Amaike K, Muto K, Yamaguchi J, Itami K. J. Am. Chem. Soc. 2012; 134: 13573
- 14e Meng L, Kamada Y, Muto K, Yamaguchi J, Itami K. Angew. Chem. Int. Ed. 2013; 52: 10048
- 14f Muto K, Yamaguchi J, Musaev DG, Itami K. Nat. Commun. 2015; 6: 7508
- 14g Okita T, Kumazawa K, Takise R, Muto K, Itami K, Yamaguchi J. Chem. Lett. 2017; 46: 218
- 14h Isshiki R, Takise R, Itami K, Muto K, Yamaguchi J. Synlett 2017; 28: 2599
- 14i Liu X, Jia J, Rueping M. ACS Catal. 2017; 7: 4491
- 14j Okita T, Muto K, Yamaguchi J. Org. Lett. 2018; 20: 3132
- 14k Chatupheeraphat A, Liao H.-H, Srimontree W, Guo L, Minenkov Y, Poater A, Caballo L, Rueping M. J. Am. Chem. Soc. 2018; 140: 3724
- 14l Masson-Makdissi J, Vandavasi JK, Newman SG. Org. Lett. 2018; 20: 4094
- 14m Matsushita K, Takise R, Muto K, Yamaguchi J. Sci. Adv. 2020; 6: eaba7614
- 15a Pu X, Hu J, Zhao Y, Shi Z. ACS Catal. 2016; 6: 6692
- 15b Guo L, Chatupheeraphat A, Rueping M. Angew. Chem. Int. Ed. 2016; 55: 11810
- 15c Takise R, Isshiki R, Muto K, Itami K, Yamaguchi J. J. Am. Chem. Soc. 2017; 139: 3340
- 15d Yue H, Guo L, Liao H.-H, Cai Y, Zhu C, Rueping M. Angew. Chem. Int. Ed. 2017; 56: 4284
- 15e Isshiki R, Muto K, Yamaguchi J. Org. Lett. 2018; 20: 1150
- 15f Malapit CA, Borrell M, Milbauer MW, Brigham CE, Sanford MS. J. Am. Chem. Soc. 2020; 142: 5918
- 16a Takise R, Muto K, Yamaguchi J, Itami K. Angew. Chem. Int. Ed. 2014; 53: 6791
- 16b Koch E, Takise R, Studer A, Yamaguchi J, Itami K. Chem. Commun. 2015; 51: 855
- 17a Chatupheeraphat A, Liao H.-H, Lee S.-C, Rueping M. Org. Lett. 2017; 19: 4255
- 17b Wang Z, Wang X, Ura Y, Nishihara Y. Org. Lett. 2019; 21: 6779
- 18 A main reason for the modest yield of some products was the decomposition of the phenyl esters to the corresponding carboxylic acids.
- 19 2-Naphthonitrile (3A); Typical Procedure A 20-mL glass vessel, equipped with a J. Young O-ring tap and a magnetic stirring bar, was charged with Ni(OAc)2·4 H2O (10.0 mg, 0.040 mmol, 10 mol%) and Na2CO3 (63.6 mg, 0.60 mmol, 1.5 equiv). The vessel was evacuated and its contents were dried with a heat gun. The vessel was then cooled to r.t., and filled with N2 gas. Phenyl 2-naphthoate (1A; 99.3 mg, 0.40 mmol, 1.0 equiv), 2-morpholinoacetonitrile (2a: 100.9 mg, 0.80 mmol, 2.0 equiv), and dcypt (38.1 mg, 0.080 mmol, 20 mol%) were added, and the vessel was evacuated and refilled with N2 gas three times. Toluene (1.6 mL) was added, and the vessel was sealed with the O-ring tap and heated at 160 °C in a nine-well reaction block for 24 h with stirring. The mixture was then cooled to r.t. and passed through a short silica-gel pad with EtOAc as an eluent. The filtrate was concentrated in vacuo, and the residue was purified by preparative TLC (hexane–EtOAc, 4:1) to give a white solid; yield: 46.3 mg (76%) (caution! The reaction should be conducted in a well-functioning fume hood to avoid exposure to the CO gas generated by the reaction. After the reaction, the vessel should be opened in the fume hood for the same reason.) 1H NMR (400 MHz, CDCl3): δ = 8.23 (s, 1 H), 7.93–7.87 (m, 3 H), 7.67–7.58 (m, 3 H). 13C NMR (101 MHz, CDCl3): δ = 134.6, 134.1, 132.2, 129.1, 129.0, 128.4, 128.0, 127.6, 126.3, 119.2, 109.3. HRMS (DART): m/z [M + NH4]+ calcd for C11H11N2: 171.0917; found: 171.0915.
For methods using K4Fe(CN)6, see:
For reviews on organic cyanating reagents, see:
For methods using alkyl nitriles, see:
For methods using other organic cyanating reagents, see:
For selected examples of decarbonylative C–C bond formations, see:
For selected examples of decarbonylative carbon–heteroatom bond formations, see:
For a related reaction using aroyl chlorides, see: