Subscribe to RSS
DOI: 10.1055/s-0040-1706472
Photo-NHC Catalysis: Accessing Ketone Photochemistry with Carboxylic Acid Derivatives
Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research foundation); Project-ID 420535461.Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 420535461.
![](https://www.thieme-connect.de/media/synlett/202102/lookinside/thumbnails/st-2020-p0458-sp_10-1055_s-0040-1706472-1.jpg)
Abstract
Excitation of carbonyl groups is one of the most widely employed activation modes in photochemistry. Many synthetically important transformations, however, are successful only with aldehydes and ketones; substrates at the carboxylic acid oxidation level remain underrepresented. We have developed a conceptually novel strategy for enabling ‘ketone-like’ photochemistry with carboxylic acid derivatives that employs an N-heterocyclic carbene (NHC) organocatalyst. Using this ‘Photo-NHC’ catalysis approach, a proof-of-concept photoenolization/Diels–Alder (PEDA) reaction between acid fluorides and trifluoroacetophenones was developed. Stoichiometric studies and TD-DFT calculations supported a mechanistic scenario in which the NHC influences the absorption wavelength and inherent photochemical reactivity of the carbonyl group during the catalytic cycle.
1 Introduction
2 Photo-NHC Catalysis
3 Conclusions
Key words
photochemistry - N-heterocyclic carbenes - organocatalysis - photoenolization - acid fluorides - annulation - cycloaddition - carbonylsPublication History
Received: 18 August 2020
Accepted after revision: 27 August 2020
Article published online:
28 September 2020
© 2020. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a MacMillan DW. C. Nature 2008; 455: 304
- 1b Grondal C, Jeanty M, Enders D. Nat. Chem. 2010; 2: 167
- 1c Jones SB, Simmons B, Mastracchio A, MacMillan DW. C. Nature 2011; 475: 183
- 1d Comprehensive Enantioselective Organocatalysis: Catalysts, Reactions and Applications. Dalko PI. Wiley-VCH; Weinheim: 2013
- 2a List B, Lerner RA, Barbas CF. J. Am. Chem. Soc. 2000; 122: 2395
- 2b Ahrendt KA, Borths CJ, MacMillan DW. C. J. Am. Chem. Soc. 2000; 122: 4243
- 2c Beeson TD, Mastracchio A, Hong J.-B, Ashton K, MacMillan DW. C. Science 2007; 316: 582
- 2d Enamine catalysis: Mukherjee S, Yang JW, Hoffmann S, List B. Chem. Rev. 2007; 107: 5471
- 2e Iminium catalysis: Erkkilä A, Majander I, Pihko PM. Chem. Rev. 2007; 107: 5416
- 2f SOMO catalysis: Mečiarová M, Tisovský P, Šebesta R. New J. Chem. 2016; 40: 4855
- 3a Wenzel AG, Jacobsen EN. J. Am. Chem. Soc. 2002; 124: 12964
- 3b Raheem IT, Thiara PS, Peterson EA, Jacobsen EN. J. Am. Chem. Soc. 2007; 129: 13404
- 3c Doyle AG, Jacobsen EN. Chem. Rev. 2007; 107: 5713
- 3d Mahlau M, List B. Angew. Chem. Int. Ed. 2013; 52: 518
- 4a Enders D, Niemeier O, Henseler A. Chem. Rev. 2007; 107: 5606
- 4b Bugaut X, Glorius F. Chem. Soc. Rev. 2012; 41: 3511
- 4c Izquierdo J, Hutson GE, Cohen DT, Scheidt KA. Angew. Chem. Int. Ed. 2012; 51: 11686
- 4d Hopkinson MN, Richter C, Schedler M, Glorius F. Nature 2014; 510: 485
- 4e Flanigan DM, Romanov-Michailidis F, White NA, Rovis T. Chem. Rev. 2015; 115: 9307
- 4f Menon RS, Biju AT, Nair V. Chem. Soc. Rev. 2015; 44: 5040
- 4g Zhang C, Hooper JF, Lupton DW. ACS Catal. 2017; 7: 2583
- 5a Silvi M, Melchiorre P. Nature 2018; 554: 41
- 5b Zou Y.-Q, Hörmann FM, Bach T. Chem. Soc. Rev. 2018; 47: 278
- 6a Brimioulle R, Lenhart D, Maturi MM, Bach T. Angew. Chem. Int. Ed. 2015; 54: 3872
- 6b Garrido-Castro AF, Maestro MC, Alemán J. Tetrahedron Lett. 2018; 59: 1286
- 7a Hopkinson MN, Sahoo B, Li J.-L, Glorius F. Chem. Eur. J. 2014; 20: 3874
- 7b Skubi KL, Blum TR, Yoon TP. Chem. Rev. 2016; 116: 10035
- 7c Twilton J, Le C, Zhang P, Shaw MH, Evans RW, MacMillan DW. C. Nat. Rev. Chem. 2017; 1: 0052
- 8 Nicewicz DA, MacMillan DW. C. Science 2008; 322: 77
- 9 Arceo E, Jurberg ID, Álvarez-Fernández A, Melchiorre P. Nat. Chem. 2013; 5: 750
- 10 Review on EDA complexes in organic synthesis: Crisenza GE. M, Mazzarella D, Melchiorre P. J. Am. Chem. Soc. 2020; 142: 5461
- 11 Silvi M, Arceo E, Jurberg ID, Cassani C, Melchiorre P. J. Am. Chem. Soc. 2015; 137: 6120
- 12a Silvi M, Verrier C, Rey YP, Buzzetti L, Melchiorre P. Nat. Chem. 2017; 9: 868
- 12b Mazzarella D, Crisenza GE. M, Melchiorre P. J. Am. Chem. Soc. 2018; 140: 8439
- 12c Bonilla P, Rey YP, Holden CM, Melchiorre P. Angew. Chem. Int. Ed. 2018; 57: 12819
- 12d Perego LA, Bonilla P, Melchiorre P. Adv. Synth. Catal. 2020; 362: 302
- 13a Alonso R, Bach T. Angew. Chem. Int. Ed. 2014; 53: 4368
- 13b Bauer A, Westkämper F, Grimme S, Bach T. Nature 2005; 436: 1139
- 13c Vallavoju N, Selvakumar S, Jockusch S, Sibi MP, Sivaguru J. Angew. Chem. Int. Ed. 2014; 53: 5604
- 13d Schweitzer-Chaput B, Horwitz MA, de Pedro Beato E, Melchiorre P. Nat. Chem. 2019; 11: 129
- 13e Tröster A, Bauer A, Jandl C, Bach T. Angew. Chem. Int. Ed. 2019; 58: 3538
- 13f Cuadros S, Horwitz MA, Schweitzer-Chaput B, Melchiorre P. Chem. Sci. 2019; 10: 5484
- 13g Spinnato D, Schweitzer-Chaput B, Goti G, Ošeka M, Melchiorre P. Angew. Chem. Int. Ed. 2020; 59: 9485
- 13h Rigotti T, Mas-Ballesté R, Alemán J. ACS Catal. 2020; 10: 5335
- 13i Li X, Jandl C, Bach T. Org. Lett. 2020; 22: 3618
- 13j Spiliopoulou N, Nikitas NF, Kokotos CG. Green Chem. 2020; 22: 3539
- 14a Schaffner K, Jeger O. Tetrahedron 1974; 30: 1891
- 14b Wagner PJ. Acc. Chem. Res. 1989; 22: 83
- 14c Bach T. Synthesis 1998; 683
- 14d Bach T, Hehn JP. Angew. Chem. Int. Ed. 2011; 50: 1000
- 14e Chemical Photocatalysis . König B. De Gruyter; Berlin: 2013
- 14f Kärkäs MD, Porco Jr. JA, Stephenson CR. J. Chem. Rev. 2016; 116: 9683
- 14g Chen C. Org. Biomol. Chem. 2016; 14: 8641
- 14h Ravelli D, Protti S, Fagnoni M. Chem. Rev. 2016; 116: 9850
- 14i Oelgemöller M, Hoffmann N. Org. Biomol. Chem. 2016; 14: 7392
- 14j D’Auria M. Photochem. Photobiol. Sci. 2019; 18: 2297
- 15 Coyle JD. Chem. Rev. 1978; 78: 97
- 16a DeCosta DP, Bennett AK, Pincock JA. J. Am. Chem. Soc. 1999; 121: 3785
- 16b Kanaoka Y. Acc. Chem. Res. 1978; 11: 407
- 16c Yoon UC, Mariano PS. Acc. Chem. Res. 2001; 34: 523
- 16d Oelgemöller M, Griesbeck AG. J. Photochem. Photobiol., C 2002; 3: 109
- 16e McDermott G, Yoo DJ, Oelgemöller M. Heterocycles 2005; 65: 2221
- 17a Mavroskoufis A, Jakob M, Hopkinson MN. ChemPhotoChem 2020; in press; DOI: 10.1002/cptc.202000120
- 17b Liu Q, Chen X.-Y. Org. Chem. Front. 2020; 7: 2082
- 17c DiRocco DA, Rovis T. J. Am. Chem. Soc. 2012; 134: 8094
- 17d Yang W, Hu W, Dong X, Li X, Sun J. Angew. Chem. Int. Ed. 2016; 55: 15783
- 17e Yoshioka E, Inoue M, Nagoshi Y, Kobayashi A, Mizobuchi R, Kawashima A, Kohtani S, Miyabe H. J. Org. Chem. 2018; 83: 8962
- 17f Dai L, Xia Z.-H, Gao Y.-Y, Gao Z.-H, Ye S. Angew. Chem. Int. Ed. 2019; 58: 18124
- 17g Dai L, Ye S. Org. Lett. 2020; 22: 986
- 17h Xia Z.-H, Dai L, Gao Z.-H, Ye S. Chem. Commun. 2020; 56: 1525
- 17i Davies AV, Fitzpatrick KP, Betori RC, Scheidt KA. Angew. Chem. Int. Ed. 2020; 59: 9143
- 17j Bayly AA, McDonald BR, Mrksich M, Scheidt KA. Proc. Natl. Acad. Sci. U.S.A. 2020; 117: 13261
- 17k Meng Q.-Y, Döben N, Studer A. Angew. Chem. Int. Ed. 2020; in press; DOI: 10.1002/anie.202008040
- 17l Example of light-mediated NHC organocatalysis without an additional photocatalyst: Gao Z.-H, Xia Z.-H, Dai L, Ye S. Adv. Synth. Catal. 2020; 362: 1819
- 18 Mavroskoufis A, Rajes K, Golz P, Agrawal A, Ruß V, Götze JP, Hopkinson MN. Angew. Chem. Int. Ed. 2020; 59: 3190
- 19a Yang NC, Rivas C. J. Am. Chem. Soc. 1961; 83: 2213
- 19b Sammes PG. Tetrahedron 1976; 32: 405
- 19c Klán P, Wirz J, Gudmundsdottir A. In CRC Handbook of Organic Photochemistry and Photobiology, 3rd ed. Griesbeck A. CRC; Boca Raton: 2012: 627
- 19d Yang B, Gao S. Chem. Soc. Rev. 2018; 47: 7926
- 20a Dell’Amico L, Vega-Peñaloza A, Cuadros S, Melchiorre P. Angew. Chem. Int. Ed. 2016; 55: 3313
- 20b Takaki K, Fujii T, Yonemitsu H, Fujiwara M, Komeyama K, Yoshida H. Tetrahedron Lett. 2012; 53: 3974
- 20c Masuda Y, Ishida N, Murakami M. J. Am. Chem. Soc. 2015; 137: 14063
- 20d Yuan X, Dong S, Liu Z, Wu G, Zou C, Ye J. Org. Lett. 2017; 19: 2322
- 20e Ide T, Masuda S, Kawato Y, Egami H, Hamashima Y. Org. Lett. 2017; 19: 4452
- 20f Dell’Amico L, Fernández-Alvarez VM, Maseras F, Melchiorre P. Angew. Chem. Int. Ed. 2017; 56: 3304
- 20g Cuadros S, Dell’Amico L, Melchiorre P. Angew. Chem. Int. Ed. 2017; 56: 11875
- 20h Review: Cuadros S, Melchiorre P. Eur. J. Org. Chem. 2018; 2884
- 21a Janssen-Müller D, Singha S, Olyschläger T, Daniliuc CG, Glorius F. Org. Lett. 2016; 18: 4444
- 21b Chen D.-F, Rovis T. Synthesis 2017; 49: 293
- 21c Wang H, Chen X, Li Y, Wang J, Wu S, Xue W, Yang S, Chi YR. Org. Lett. 2018; 20: 333
- 21d Hu Y, Pan D, Cong L, Yao Y, Yu C, Li T, Yao C. ChemistrySelect 2018; 3: 1708
Selected reviews:
Seminal early reports:
Selected reviews:
Seminal early reports:
Selected reviews:
Selected reviews:
Reviews:
Reviews:
Reviews on the combination of photoredox catalysis with other catalysis modes:
Selected further examples involving direct excitation of organocatalytic intermediates:
Selected reviews:
Example of a Norrish type II elimination with aromatic esters:
Reviews on Norrish-type reactivity with phthalimide derivatives:
Reviews:
Selected examples:
First report:
Selected reviews:
An enantioselective PEDA reaction of benzophenones has been reported using hydrogen-bonding organocatalysts:
Selected examples of photoenolization of benzophenones: