Subscribe to RSS
DOI: 10.1055/s-0040-1707152
Dearomatization Reactions of Indoles to Access 3D Indoline Structures
The research leading to the results summarized in this account has received funding from the ANR (ANR-17-CE07-0050 “ArDCo” and ANR-12-JS07-0002 “CouPhIn), the European Union's Seventh Framework Programme FP7/2007-2013/ under REA grant agreement n° 623422 (“ElectrIndole”), Labex CHARMMMAT (ANR-11-LABX-0039), the China Scholarship Council, the “Ministère de l’Enseignement Supérieur, de la Recherche et de l’Innovation, the Université Paris-Sud and the CNRS.
Publication History
Received: 26 April 2020
Accepted after revision: 23 May 2020
Publication Date:
24 June 2020 (online)
Abstract
This Account summarizes our involvement in the development of dearomatization reactions of indoles that has for origin a total synthesis problematic. We present the effort from our group to obtain 3D-indolines scaffold from the umpolung of N-acyl indoles via activation with FeCl3 to the oxidative spirocyclizations of N-EWG indoles and via the use of electrochemistry.
1 Introduction
2 Activation of N-Acyl Indoles with FeCl3
2.1 Hydroarylation of N-Acyl Indoles
2.2 Difunctionalization of N-Acyl Indoles
3 Radical-Mediated Dearomatization of Indoles for the Synthesis of Spirocyclic Indolines
4 Electrochemical Dearomatization of Indoles
4.1 Direct Electrochemical Oxidation of Indoles
4.2 Indirect Electrochemical Oxidation of Indoles
5 Conclusion
-
References
- 1 Lovering F, Bikker J, Humblet C. J. Med. Chem. 2009; 52: 6752
- 2a Roche SP, Youte Tendoung J.-J, Tréguier B. Tetrahedron 2015; 71: 3549
- 2b Denizot N, Tomakinian T, Beaud R, Kouklovsky C, Vincent G. Tetrahedron Lett. 2015; 56: 4413
- 3a Asymmetric Dearomatization Reactions . You S.-L. Wiley-VCH; Weinheim: 2016
- 3b Zheng C, You S.-L. Chem 2016; 1: 830
- 3c Zhuo C.-X, Zhang W, You S.-L. Angew. Chem. Int. Ed. 2012; 51: 12662
- 3d Roche SP, Porco JA. Jr. Angew. Chem. Int. Ed. 2011; 50: 4068
- 4 Wu Q.-X, Crews MS, Draskovic M, Sohn J, Johnson TA, Tenney K, Valeriote FA, Yao X.-J, Bjeldanes LF, Crews P. Org. Lett. 2010; 12: 4458
- 5a Beaud R, Tomakinian T, Denizot N, Pouilhès A, Kouklovsky C, Vincent G. Synlett 2015; 26: 432
- 5b Ito Y, Ueda M, Miyata O. Heterocycles 2014; 89: 2029
- 5c Lachia M, Moody CJ. Nat. Prod. Rep. 2008; 25: 227
- 6a Burgett AW. G, Li Q, Wei Q, Harran PG. Angew. Chem. Int. Ed. 2003; 42: 4961
- 6b Ding H, DeRoy PL, Perreault C, Larivée A, Siddiqui A, Caldwell CG, Harran S, Harran PG. Angew. Chem. Int. Ed. 2015; 54: 4818
- 7a Chan C, Li C, Zhang F, Danishefsky SJ. Tetrahedron Lett. 2006; 47: 4839
- 7b Nicolaou KC, Majumder U, Roche SP, Chen DY.-K. Angew. Chem. Int. Ed. 2007; 46: 4715
- 8a Zhao J.-C, Yu S.-M, Liu Y, Yao Z.-J. Org. Lett. 2013; 15: 4300
- 8b Zhao J.-C, Yu S.-M, Qui H.-B, Yao Z.-J. Tetrahedron 2014; 70: 3197
- 9a Cerveri A, Bandini M. Chin. J. Chem. 2020; 38: 287
- 9b Bandini M. Org. Biomol. Chem. 2013; 11: 5206
- 9c Kishbaugh TL. S. Heterocyclic Scaffolds II . In Topics in Heterocyclic Chemistry . Gribble GW. Springer; Berlin/Heidelberg: 2010: 117-140
- 10a Nishida K, Yanase E, Nakatsuka S.-i. ITE Lett. Batt. New Technol. Med. 2006; 7: 59
- 10b Tajima N, Hayashi T, Nakatsuka S.-N. Tetrahedron Lett. 2000; 41: 1059
- 11 Beaud R, Guillot R, Kouklovsky C, Vincent G. Angew. Chem. Int. Ed. 2012; 51: 12546
- 12 Beaud R, Guillot R, Kouklovsky C, Vincent G. Chem. Eur. J. 2014; 20: 7492
- 13 For a review, see: James MJ, O’Brien P, Taylor RJ. K, Unsworth WP. Chem. Eur. J. 2016; 22: 2856
- 14 Nandi RK, Guillot R, Kouklovsky C, Vincent G. Org. Lett. 2016; 18: 1716
- 15 Nandi RK, Ratsch F, Beaud R, Guillot R, Kouklovsky C, Vincent G. Chem. Commun. 2016; 52: 5328
- 16 Morimoto N, Morioku K, Suzuki H, Takeuchi Y, Nishina Y. Org. Lett. 2016; 18: 2020
- 17 Beaud R, Nandi RK, Perez-Luna A, Guillot R, Gori D, Kouklovsky C, Ghermani N.-E, Gandon V, Vincent G. Chem. Commun. 2017; 53: 5834
- 18 Nandi RK, Perez-Luna A, Gori D, Beaud R, Guillot R, Kouklovsky C, Gandon V, Vincent G. Adv. Synth. Catal. 2018; 360: 161
- 19 Huang Z, Jin L, Feng Y, Peng P, Yi H, Lei A. Angew. Chem. Int. Ed. 2013; 52: 7151
- 20 Tomakinian T, Guillot R, Kouklovsky C, Vincent G. Angew. Chem. Int. Ed. 2014; 53: 11881
- 21 Liu K, Tang S, Huang P, Lei A. Nat. Commun. 2017; 8: 775
- 22 Li L, Yuan K, Jia Q, Jia Y. Angew. Chem. Int. Ed. 2019; 58: 6074
- 23 Wu J, Nandi RK, Guillot R, Kouklovsky C, Vincent G. Org. Lett. 2018; 20: 1845
- 24a Bubnov YN, Zhun’ IV, Klimkina EV, Ignatenko AV, Starikova ZA. Eur. J. Org. Chem. 2000; 3323
- 24b Nowrouzi F, Batey RA. Angew. Chem. Int. Ed. 2013; 52: 892
- 24c Alam R, Diner C, Jonker S, Eriksson L, Szabó KJ. Angew. Chem. Int. Ed. 2016; 55: 14417
- 25 Zhu M, Zheng C, Zhang X, You S.-L. J. Am. Chem. Soc. 2019; 141: 2636
- 26 Firooznia F, Kester RF, Berthel SJ. Heterocyclic Scaffolds II . In Topics in Heterocyclic Chemistry . Gribble GW. Springer; Berlin/Heidelberg: 2010: 283-326
- 27a Portalier F, Bourdreux F, Marrot J, Moreau X, Coeffard V, Greck C. Org. Lett. 2013; 15: 5642
- 27b Pantaine L, Coeffard V, Moreau X, Greck C. Eur. J. Org. Chem. 2015; 2005
- 28 Marques A.-S, Coeffard V, Chataigner I, Vincent G, Moreau X. Org. Lett. 2016; 18: 5296
- 29a Riveira MJ, Marsili LA, Mischne M. Org. Biomol. Chem. 2017; 15: 9255
- 29b Yadykov AV, Shirinian VZ. Adv. Synth. Catal. 2020; 362: 702
- 30 Riveira MJ, Mischne MP. J. Org. Chem. 2014; 79: 8244
- 31a Marques A.-S, Duhail T, Marrot J, Chataigner I, Coeffard V, Vincent G, Moreau X. Angew. Chem. Int. Ed. 2019; 58: 9969
- 31b Marques A.-S, Marrot J, Chataigner I, Coeffard V, Vincent G, Moreau X. Org. Lett. 2018; 20: 792
- 32a Minisci F, Bernardi R, Bertini F, Galli R, Perchinummo M. Tetrahedron 1971; 27: 3575
- 32b Duncton MA. J. MedChemComm 2011; 2: 1135
- 32c Ding B, Weng Y, Liu Y, Song C, Yin L, Yuan J, Ren Y, Lei A, Chiang C.-W. Eur. J. Org. Chem. 2019; 7596
- 32d Chen L, Zou Y.-X. Org. Biomol. Chem. 2018; 16: 7544
- 33 Li J, Liu M, Li Q, Tian H, Shi Y. Org. Biomol. Chem. 2014; 12: 9769
- 34 Ryzhakov D, Jarret M, Guillot R, Kouklovsky C, Vincent G. Org. Lett. 2017; 19: 6336
- 35a Langlois BR, Laurent E, Roidot N. Tetrahedron Lett. 1991; 32: 7525
- 35b Fujiwara Y, Dixon JA, O’Hara F, Funder ED, Dixon DD, Rodriguez RA, Baxter RD, Herlé B, Sach N, Collins MR, Ishihara Y, Baran PS. Nature 2012; 492: 95
- 35c Lefebvre Q. Synlett 2017; 28: 19
- 36 Ye J.-H, Zhu L, Yan S.-S, Miao M, Zhang X.-C, Zhou W.-J, Li J, Lan Y, Yu D.-G. ACS Catal. 2017; 7: 8324
- 37 Ryzhakov D, Jarret M, Baltaze J.-P, Guillot R, Kouklovsky C, Vincent G. Org. Lett. 2019; 21: 4986
- 38a Wang Q, Qu Y, Xia Q, Song H, Song H, Liu Y, Wang Q. Adv. Synth. Catal. 2018; 360: 2879
- 38b Wang Q, Qu Y, Xia Q, Song H, Song H, Liu Y, Wang Q. Chem. Eur. J. 2018; 24: 11283
- 39a Zhang C, Li S, Bureš F, Lee R, Ye X, Jiang Z. ACS Catal. 2016; 6: 6853
- 39b Schilling W, Zhang Y, Riemer D, Das S. Chem. Eur. J. 2020; 26: 390
- 40a Francke R, Little RD. Chem. Soc. Rev. 2014; 43: 2492
- 40b Horn EJ, Rosen BR, Baran PS. ACS Cent. Sci. 2016; 2: 302
- 40c Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
- 40d Wiebe A, Gieshoff T, Möhle S, Rodrigo E, Zirbes M, Waldvogel SR. Angew. Chem. Int. Ed. 2018; 57: 5594
- 40e Möhle S, Zirbes M, Rodrigo E, Gieshoff T, Wiebe A, Waldvogel SR. Angew. Chem. Int. Ed. 2018; 57: 6018
- 40f Tang S, Liu Y, Lei A. Chem 2018; 4: 27
- 41a Martins GM, Shirinfar B, Hardwick T, Ahmed N. ChemElectroChem 2019; 6: 1254
- 41b Sauer GS, Lin S. ACS Catal. 2018; 8: 5175
- 41c Feng R, Smith JA, Moeller KD. Acc. Chem. Res. 2017; 50: 2346
- 42 Lv S, Zhang G, Chen J, Gao W. Adv. Synth. Catal. 2020; 362: 462
- 43 Royer J, Planas L, Martens T, Billon-Souquet F. Heterocycles 2004; 63: 765
- 44 Yin B, Wang L, Inagi S, Fuchigami T. Tetrahedron 2010; 66: 6820
- 45 Wu J, Dou Y, Guillot R, Kouklovsky C, Vincent G. J. Am. Chem. Soc. 2019; 141: 2832
- 46a Kwon S, Kuroki N. Chem. Lett. 1980; 9: 237
- 46b Vice SF, Dmitrienko GI. Can. J. Chem. 1982; 60: 1233
- 46c Kawasaki T, Chien C.-S, Sakamoto M. Chem. Lett. 1983; 12: 855
- 46d Takayama H, Misawa K, Okada N, Ishikawa H, Kitajima M, Hatori Y, Murayama T, Wongseripipatana S, Tashima K, Matsumoto K, Horie S. Org. Lett. 2006; 8: 5705
- 46e Silva LF. Jr, Craveiro MV, Gambardella MT. P. Synthesis 2007; 3851
- 46f Liu Q, Zhao QY, Liu J, Wu P, Yi H, Lei A. Chem. Commun. 2012; 48: 3239
- 47a Hino T, Miura H, Murata R, Nakagawa M. Chem. Pharm. Bull. 1978; 26: 3695
- 47b Pathak TP, Gligorich KM, Welm BE, Sigman MS. J. Am. Chem. Soc. 2010; 132: 7870
- 47c Han L, Zhang W, Shi X.-X, You S.-L. Adv. Synth. Catal. 2015; 357: 3064
- 48a Braun NA, Bray JD, Ciufolini MA. Tetrahedron Lett. 1999; 40: 4985
- 48b Zhang Y.-Q, Yuan Y.-A, Liu G.-S, Xu H. Org. Lett. 2013; 15: 3910
- 48c Zhang Z, Li X, Song M, Wan Y, Zheng D, Zhang G, Chen G. J. Org. Chem. 2019; 84: 12792
- 49a Tamura Y, Kwon S, Tabusa F, Ikeda M. Tetrahedron Lett. 1975; 16: 3291
- 49b Tamura Y, Chun MW, Kwon S, Said MB, Okada T, Ikeda M. Chem. Pharm. Bull. 1978; 26: 3515
- 49c Moriarty RM, Khosrowshahi JS. A. Tetrahedron Lett. 1986; 27: 2809
- 49d Nocquet-Thibault S, Rayar A, Retailleau P, Cariou K, Dodd RH. Chem. Eur. J. 2015; 21: 14205
- 49e Yuan Y.-A, Lu D.-F, Chen Y.-R, Xu H. Angew. Chem. Int. Ed. 2016; 55: 534
- 49f Shen S.-J, Zhu C.-L, Lu D.-F, Xu H. ACS Catal. 2018; 8: 4473
- 50 Fu N, Sauer GS, Saha A, Loo A, Lin S. Science 2017; 357: 575
- 51 For an electrochemical diamination of indoles via a different pathway, see: Li L, Luo S. Org. Lett. 2018; 20: 1324
- 52a Zhang S, Li L, Wu P, Gong P, Liu R, Xu K. Adv. Synth. Catal. 2019; 361: 485
- 52b Liu K, Song W, Deng Y, Yang H, Song C, Abdelilah T, Wang S, Cong H, Tang S, Lei A. Nat. Commun. 2020; 11: 3
- 52c Song C, Liu K, Jiang X, Dong X, Weng Y, Chiang C.-W, Lei A. Angew. Chem Int. Ed. 2020; 59: 7193
- 53 Sun L, Zhang X, Li Z, Ma J, Zeng Z, Jiang H. Eur. J. Org. Chem. 2018; 4949
- 54 Wu J, Abou-Hamdan H, Guillot R, Kouklovsky C, Vincent G. Chem. Commun. 2020; 56: 1713
- 55 For the related synthesis of bromopyrroloindolines by in situ oxidation of bromide salts with oxone, see: Xu J, Tong R. Green Chem. 2017; 19: 2952
- 56 Hakamata H, Sato S, Ueda H, Tokuyama H. Org. Lett. 2017; 19: 5308
- 57 Liu K, Deng Y, Song W, Song C, Lei A. Chin. J. Chem. 2020; 38
- 58 Wu J, Guillot R, Kouklovsky C, Vincent G. Adv. Synth. Catal. 2020; 362: 1712
- 59a Dou Y, Kouklovsky C, Gandon V, Vincent G. Angew. Chem. Int. Ed. 2020; 59: 1527
- 59b Denizot N, Guillot R, Kouklovsky C, Vincent G. Synthesis 2018; 50: 4823
- 59c Lachkar D, Denizot N, Bernadat G, Ahamada K, Beniddir MA, Dumontet V, Gallard J.-F, Guillot R, Leblanc K, N’nang EO, Turpi V, Kouklovsky C, Poupon E, Evanno L, Vincent G. Nat. Chem. 2017; 9: 793
- 59d Tomakinian T, Abou-Hamdan H, Denizot N, Guillot R, Baltaze J.-P, Kouklovsky C, Vincent G. Eur. J. Org. Chem. 2017; 2757
- 59e Denizot N, Pouilhès A, Cucca M, Beaud R, Guillot R, Kouklovsky C, Vincent G. Org. Lett. 2014; 16: 5752
For an electrochemical version, see:
For a review on the iso-Nazarov reaction, see:
For a review on interrupted Nazarov processes, see:
Seminal contribution:
For a review, see:
For the synthesis of 2-trifluoromethylindoles, see:
For the synthesis of 2-phosphonoindoles, see:
Selected examples:
For selected nonelectrochemical dearomative dialkoxylation or dihydroxylation of indoles, see:
For the synthesis of related hydroxypyranoindoline derivatives via dearomatization, see:
For the synthesis of related 3,3-spiro-3-amino-2-hydroxyindoline derivatives via dearomatization, see:
For selective nonelectrochemical dearomative diazidations of indoles, see: