Synlett 2020; 31(15): 1443-1447
DOI: 10.1055/s-0040-1707900
synpacts
© Georg Thieme Verlag Stuttgart · New York

Asymmetric Reductive Dicarbofunctionalization of Alkenes via Nickel Catalysis

David Anthony
,
Tianning Diao
This work was supported by the National Science Foundation (CHE-1654483) and the National Institutes of Health (NIH) (R01 GM127778). D.A. is supported by the Margaret and Herman Sokol Fellowship. T.D. is a recipient of the Alfred P. Sloan Research Fellowship (FG-2018-10354) and the Camille and Henry Dreyfus Foundation (Camille-Dreyfus Teacher-Scholar Award TC-19-019).
Further Information

Publication History

Received: 22 April 2020

Accepted after revision: 20 May 2020

Publication Date:
22 July 2020 (online)


Abstract

Alkenes are an appealing functional group that can be transformed into a variety of structures. Transition-metal catalyzed dicarbofunctionalization of alkenes can efficiently afford products with complex substitution patterns from simple substrates. Under reductive conditions, this transformation can be achieved while avoiding stoichiometric organometallic reagents. Asymmetric difunctionalization of alkenes has been underdeveloped, in spite of its potential synthetic utility. Herein, we present a summary of our efforts to control enantioselectivity for alkene diarylation with a nickel catalyst. This reaction is useful for preparing triarylethanes. The selectivity is enhanced by an N-oxyl radical additive.