Subscribe to RSS
DOI: 10.1055/s-0040-1707900
Asymmetric Reductive Dicarbofunctionalization of Alkenes via Nickel Catalysis
This work was supported by the National Science Foundation (CHE-1654483) and the National Institutes of Health (NIH) (R01 GM127778). D.A. is supported by the Margaret and Herman Sokol Fellowship. T.D. is a recipient of the Alfred P. Sloan Research Fellowship (FG-2018-10354) and the Camille and Henry Dreyfus Foundation (Camille-Dreyfus Teacher-Scholar Award TC-19-019).Publication History
Received: 22 April 2020
Accepted after revision: 20 May 2020
Publication Date:
22 July 2020 (online)
Abstract
Alkenes are an appealing functional group that can be transformed into a variety of structures. Transition-metal catalyzed dicarbofunctionalization of alkenes can efficiently afford products with complex substitution patterns from simple substrates. Under reductive conditions, this transformation can be achieved while avoiding stoichiometric organometallic reagents. Asymmetric difunctionalization of alkenes has been underdeveloped, in spite of its potential synthetic utility. Herein, we present a summary of our efforts to control enantioselectivity for alkene diarylation with a nickel catalyst. This reaction is useful for preparing triarylethanes. The selectivity is enhanced by an N-oxyl radical additive.
-
References
- 1a Giri R, KC S. J. Org. Chem. 2018; 83: 3013
- 1b Derosa J, Apolinar O, Kang T, Tran VT, Engle KM. Chem. Sci. 2020; 11: 4287
- 2a Chapdelaine MJ, Hulce M. Org. React. 2004; 38: 225
- 2b Ihara M, Fukumoto K. Angew. Chem. Int. Ed. Engl. 1993; 32: 1010
- 2c Wang X, An J, Zhang Z, Tan F, Chen J, Xiao W. Org. Lett. 2011; 13: 808
- 3 Urkalan KB, Sigman MS. Angew. Chem. Int. Ed. 2009; 48: 3146
- 4a Liao L, Jana R, Urkalan KB, Sigman MS. J. Am. Chem. Soc. 2011; 133: 5784
- 4b McCammant MS, Liao L, Sigman MS. J. Am. Chem. Soc. 2013; 135: 4167
- 4c Stokes BJ, Liao L, de Andrade AM, Wang Q, Sigman MS. Org. Lett. 2014; 16: 4666
- 5 Liu Z, Zeng T, Yang KS, Engle KM. J. Am. Chem. Soc. 2016; 138: 15122
- 6a Wu X, Lin H, Li M, Li L, Han Z, Gong L. J. Am. Chem. Soc. 2015; 137: 13476
- 6b Stokes BJ, Liao L, de Andrade AM, Wang Q, Sigman MS. Org. Lett. 2014; 16: 4666
- 7 Yasui Y, Kamisaki H, Takemoto Y. Org. Lett. 2008; 10: 3303
- 8a Qin T, Cornella J, Li C, Malins LR, Edwards JT, Kawamura S, Maxwell BD, Eastgate MD, Baran PS. Science 2016; 352: 801
- 8b Derosa J, Tran VT, Boulous MN, Chen JS, Engle KM. J. Am. Chem. Soc. 2017; 139: 10657
- 8c Shrestha B, Basnet P, Dhungana RK, Kc S, Thapa S, Sears JM, Giri R. J. Am. Chem. Soc. 2017; 139: 10653
- 8d Derosa J, van der Puyl VA, Tran VT, Liu M, Engle KM. Chem. Sci. 2018; 9: 5278
- 8e Huang D, Olivieri D, Sun Y, Zhang P, Newhouse TR. J. Am. Chem. Soc. 2019; 141: 16249
- 8f Gao P, Chen LA, Brown MK. J. Am. Chem. Soc. 2018; 140: 10653
- 9a Cong H, Fu GC. J. Am. Chem. Soc. 2014; 136: 3788
- 9b Wang K, Ding Z, Zhou Z, Kong W. J. Am. Chem. Soc. 2018; 140: 12364
- 9c Jin Y, Wang C. Angew. Chem. Int. Ed. 2019; 58: 6722
- 9d Tian ZX, Qiao JB, Xu GL, Pang X, Qi L, Ma WY, Zhao ZZ, Duan J, Du YF, Su P, Liu XY, Shu XZ. J. Am. Chem. Soc. 2019; 141: 7637
- 10a Weix DJ. Acc. Chem. Res. 2015; 48: 1767
- 10b Wang X, Dai Y, Gong H. Top. Curr. Chem. 2016; 374: 43
- 11 Garcia-Dominguez A, Li Z, Nevado C. J. Am. Chem. Soc. 2017; 139: 6835
- 12 Hazari N, Melvin PR, Beromi MM. Nat. Rev. Chem. 2017; 1: 0025
- 13a Ozawa F, Kubo A, Hayashi T. J. Am. Chem. Soc. 1991; 113: 1417
- 13b Ashimori A, Overman LE. J. Org. Chem. 1992; 57: 4571
- 13c Ashimori A, Bachand B, Overman LE, Poon DJ. J. Am. Chem. Soc. 1998; 120: 6477
- 14 Gutierrez O, Tellis JC, Primer DN, Molander GA, Kozlowski MC. J. Am. Chem. Soc. 2015; 137: 4896
- 15 Kuang Y, Anthony D, Katigbak J, Marrucci F, Humagain S, Diao T. Chem 2017; 3: 268
- 16 Diccianni JB, Diao T. Trends Chem. 2019; 1: 830
- 17 Falivene L, Cao Z, Petta A, Serra L, Poater A, Oliva R, Scarano V, Cavallo L. Nat. Chem. 2019; 11: 872
- 18 Anthony D, Lin Q, Baudet J, Diao T. Angew. Chem. Int. Ed. 2019; 58: 3198
- 19 Lin Q, Diao T. J. Am. Chem. Soc. 2019; 141: 17937