Synthesis 2022; 54(17): 3817-3822
DOI: 10.1055/s-0040-1719890
special topic
Special Issue in memory of Prof. Ferenc Fülöp

Heteroatom-Tethered ω-Alkenylallylboronates: Stereoselective Synthesis of Heterocyclic Derived Alcohols

Francisco Garnes-Portolés
a   Departamento de Química Orgánica, Universidad de Valencia, Av. Vicent Andrés Estellés, 46100 Burjassot, Valencia, Spain
,
Rubén Miguélez
b   Departamento de Química Orgánica e Inorgánica, Universidad de Oviedo, Julian Clavería 8, 33006 Oviedo, Spain
,
Matthew N. Grayson
c   Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
,
Pablo Barrio
a   Departamento de Química Orgánica, Universidad de Valencia, Av. Vicent Andrés Estellés, 46100 Burjassot, Valencia, Spain
b   Departamento de Química Orgánica e Inorgánica, Universidad de Oviedo, Julian Clavería 8, 33006 Oviedo, Spain
› Author Affiliations
P.B. thanks the Ministerio de Economía y Competitividad (MINECO, Spain) for a Ramón y Cajal contract (RyC-2016-20951). M.N.G. thanks the University of Bath for financial support.


Dedicated to Professor Fülöp, in memoriam

Abstract

The synthesis of ω-alkenylallylboronates using a heteroatom tether to join both functional groups is described for the first time. Then, these unprecedented compounds were used in a tandem Brønsted acid catalyzed allylboration/ring-closing metathesis (RCM) reaction affording heterocyclic derived alcohols as single diastereoisomers. The low enantioselectivity observed in the asymmetric version using a chiral phosphoric acid catalyst was studied theoretically.

Supporting Information



Publication History

Received: 15 November 2021

Accepted after revision: 17 December 2021

Article published online:
03 March 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 New address: F. Garnes-Portolés, Instituto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain.

    • For reviews on the allylboration reaction, see:
    • 2a Diner C, Szabo KJ. J. Am. Chem. Soc. 2017; 139: 2
    • 2b Huo H.-X, Duvall JR, Huang M.-Y, Hong R. Org. Chem. Front. 2014; 1: 303
    • 2c Carreira EM, Kvaerno L. Classics in Stereoselective Synthesis . Wiley-VCH; Weinheim: 2009: 164
    • 2d Lachance H, Hall DG. Org. React. 2008; 73: 1
    • 2e Denmark SE, Fu J. Chem. Rev. 2003; 103: 2763
    • 2f Denmark SE, Almstead NG. In Modern Carbonyl Chemistry . Otera J. Wiley-VCH; Weinheim: 2000: 299
    • 2g Chemler SR, Roush WR. In Modern Carbonyl Chemistry . Otera J. Wiley-VCH; Weinheim: 2000: 403
    • 2h Yamamoto Y, Asao N. Chem. Rev. 1993; 93: 2207
    • 2i Roush WR. In Comprehensive Organic Synthesis, Vol. 2B. Trost BM. Pergamon Press; Oxford: 1991: 1
  • 3 For an excellent account on chair-like six-membered transition states, see: Mejuch T, Gilboa N, Gayon E, Wang H, Houk KN, Marek I. Acc. Chem. Res. 2013; 46: 1659

    • The Nobel Prize in Chemistry 2005 was awarded to R. H. Grubbs, R. R. Schrock, and Y. Chauvin for the development of this reaction:
    • 4a Grubbs RH. Angew. Chem. Int. Ed. 2006; 45: 3760
    • 4b Schrock RR. Angew. Chem. Int. Ed. 2006; 45: 3748
    • 4c Chauvin Y. Angew. Chem. Int. Ed. 2006; 45: 3740
  • 7 Fustero S, Rodríguez E, Lázaro R, Herrera L, Catalán S, Barrio P. Adv. Synth. Catal. 2013; 355: 1058
    • 8a Rodríguez E, Grayson MN, Asensio A, Barrio P, Houk KN, Fustero S. ACS Catal. 2016; 6: 2506
    • 8b Barrio P, Rodríguez E, Saito K, Fustero S, Akiyama T. Chem. Commun. 2015; 51: 5246

    • For a review on our contribution to the field, see:
    • 8c Barrio P, Rodríguez E, Fustero S. Chem. Rec. 2016; 16: 2046
  • 9 Jain P, Antilla JC. J. Am. Chem. Soc. 2010; 132: 11884
  • 10 Garnes-Portolés F, Miguélez R, Grayson MN, Barrio P. Eur. J. Org. Chem. 2021; 3492
  • 11 Dutheuil G, Selander N, Szabó KJ, Aggarwal VK. Synthesis 2008; 2293
  • 12 Prices from Sigma-Aldrich, October 2021.
  • 13 The new reaction conditions for the acetate derivative were taken from: Ishiyama T, Ahiko T, Miyaura N. Tetrahedron Lett. 1996; 37: 6889

    • For examples of palladium catalyst poisoning by sulfur species, see:
    • 14a Choudhary VR, Sane MG. J. Chem. Technol. Biotechnol. 1998; 73: 336
    • 14b Zwicky JJ, Gut G. Chem. Eng. Sci. 1978; 33: 1363
    • 14c Fuji Y, Bailar JC. J. Catal. 1978; 52: 342
    • 14d Williams FL, Baron K. J. Catal. 1975; 40: 108
    • 15a Grayson MN, Pellegrinet SC, Goodman JM. J. Am. Chem. Soc. 2012; 134: 2716
    • 15b Grayson MN, Yang Z, Houk KN. J. Am. Chem. Soc. 2017; 139: 7717
    • 15c Grayson MN, Goodman JM. J. Am. Chem. Soc. 2013; 135: 6142
    • 15d Grayson MN, Krische MJ, Goodman JM. J. Am. Chem. Soc. 2015; 137: 8838
    • 15e Farrar EH. E, Grayson MN. J. Org. Chem. 2020; 85: 15449
  • 16 Sedgwick DM, Grayson MN, Fustero S, Barrio P. Synthesis 2018; 50: 1935