Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2022; 33(14): 1463-1467
DOI: 10.1055/s-0041-1737335
DOI: 10.1055/s-0041-1737335
cluster
Organic Chemistry in Thailand
Asymmetric Formal Synthesis of (–)-Swainsonine from Chiral-Pool Precursors d-Mannose and d-Arabinose
Financial support was provided by the Thailand Research Fund (MG6180015), the Kasetsart University Research and Development Institute (KURDI), the Graduate School Kasetsart University (through the Graduate School Fellowship Program), the Faculty of Science, Kasetsart University (through the PRF Funding), the Center of Excellence for Innovation in Chemistry (PERCH-CIC), the Ministry of Higher Education, Science, Research and Innovation, Thailand, and the Department of chemistry, Kasetsart University.
Abstract
Carbohydrates have played an important role in organic synthesis. Since they contain many stereocenters, they have been widely used as chiral-pool starting materials. Herein, we report the asymmetric formal synthesis of (–)-swainsonine, which exhibits anticancer and immunosuppressive activities and inhibits lysosomal α-mannosidase activity, from d-mannose and d-arabinose. The synthesis utilized Zn-mediated Bernet–Vasella reaction, Horner–Wadsworth–Emmons olefination, and Grubbs olefin metathesis as key reactions.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0041-1737335.
- Supporting Information
Publication History
Received: 12 December 2021
Accepted after revision: 12 January 2022
Article published online:
04 February 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Goss PE, Baker MA, Carver JP, Dennis JW. Clin. Cancer Res. 1995; 1: 935
- 1b Shaheen PE, Stadler W, Elson P, Knox J, Winquist E, Bukowski RM. Invest. New Drugs 2005; 23: 577
- 2a Fleet GW. J, Gough MJ, Smith PW. Tetrahedron Lett. 1984; 25: 1853
- 2b Suami T, Tadano K, Iimura Y. Chem. Lett. 1984; 13: 513
- 2c Ali MH, Hough L, Richardson AC. Carbohydr. Res. 1985; 136: 225
- 2d Setoi H, Takeno H, Hashimoto M. J. Org. Chem. 1985; 50: 3948
- 2e Suami T, Tadano K. i, Iimura Y. Carbohydr. Res. 1985; 136: 67
- 2f Molyneux RJ, Roitman JN, Dunnheim G, Szumilo T, Elbein AD. Arch. Biochem. Biophys. 1986; 251: 450
- 2g Bashyal BP, Fleet GW. J, Gough MJ, Smith PW. Tetrahedron 1987; 43: 3083
- 2h Bennett RB. III, Choi JR, Montgomery WD, Cha JK. J. Am. Chem. Soc. 1989; 111: 2580
- 2i Carpenter NM, Fleet GW. J, Cenci di Bello I, Winchester B, Fellows LE, Nash RJ. Tetrahedron Lett. 1989; 30: 7261
- 2j Tan GT, Pezzuto JM, Kinghorn AD, Hughes SH. J. Nat. Prod. 1991; 54: 143
- 2k Michael JP. Nat. Prod. Rep. 1993; 10: 51
- 2l Michael JP. Nat. Prod. Rep. 1994; 11: 17
- 2m Pearson WH, Hembre EJ. J. Org. Chem. 1996; 61: 7217
- 2n El Nemr A. Tetrahedron 2000; 56: 8579
- 2o Tong DW, Cao GR, Li SJ. J. Northwest A&F (Univ. Nat. Sci. Ed.) 2001; 29: 5
- 2p Buschmann N, Rückert A, Blechert S. J. Org. Chem. 2002; 67: 4325
- 2q Martín R, Murruzzu C, Pericàs MA, Riera A. J. Org. Chem. 2005; 70: 2325
- 2r Au CW. G, Pyne SG. J. Org. Chem. 2006; 71: 7097
- 2s Déchamps I, Pardo DG, Cossy J. Tetrahedron 2007; 63: 9082
- 2t Michael JP. Nat. Prod. Rep. 2007; 24: 191
- 2u Shi GF, Li JQ, Jiang XP, Cheng Y. Tetrahedron 2008; 64: 5005
- 2v Pyne GS. Curr. Org. Synth. 2005; 2: 39
- 2w Dawood RA. Res. J. Pharm. Technol. 2021; 14: 2021
- 3a Guengerich FP, DiMari SJ, Broquist HP. J. Am. Chem. Soc. 1973; 95: 2055
- 3b Braun K, Romero J, Liddell C, Creamer R. Mycol. Res. 2003; 107: 980
- 3c Yu Y, Zhao Q, Wang J, Wang J, Wang Y, Song Y, Geng G, Li Q. Toxicon 2010; 56: 330
- 3d Zhao QM, Yu YT, He SH, Wang JH. J. Agric. Sci. 2012; 33: 82
- 3e Cook D, Gardner DR, Pfister JA. J. Agric. Food Chem. 2014; 62: 7326
- 3f Huang X, Liang JP, Gao XD, Hao BC. Acta Vet. Zootech. Sin. 2016; 47: 1075
- 4a Tulsiani DR. P, Harris TM, Touster O. J. Biol. Chem. 1982; 257: 7936
- 4b White SL, Schweitzer K, Humphries MJ, Olden K. Biochem. Biophys. Res. Commun. 1988; 150: 615
- 4c Bowlin TL, McKown BJ, Kang MS, Sunkara PS. Cancer Res. 1989; 49: 4109
- 4d Dennis JW, Koch K, Yousefi S, VanderElst I. Cancer Res. 1990; 50: 1867
- 4e Galustian C, Foulds S, Dye JF, Guillou PJ. Immunopharmacology 1994; 27: 165
- 4f Liao YF, Lal A, Moremen KW. J. Biol. Chem. 1996; 271: 28348
- 4g Klein JL. D, Roberts JD, George MD, Kurtzberg J, Breton P, Chermann JC, Olden K. Br. J. Cancer 1999; 80: 87
- 4h Oredipe OA, Furbert-Harris PM, Laniyan I, Griffin WM, Sridhar R. Int. Immunopharmacol. 2003; 3: 1537
- 4i Hamaguchi J, Nakagawa H, Takahashi M, Kudo T, Kamiyama N, Sun B, Oshima T, Sato Y, Deguchi K, Todo S, Nishimura S.-I. Mol. Cancer 2007; 6: 58
- 5a Callam CS, Gadikota RR, Lowary TL. Carbohydr. Res. 2001; 330: 267
- 5b Guyenne S, León EI, Martín A, Pérez-Martín I, Suárez E. J. Org. Chem. 2012; 77: 7371
- 6 Yin H, D’Souz FW, Lowary TL. J. Org. Chem. 2002; 67: 892
- 7a Lumyong K, Kongkathip B, Chuanopparat N, Kongkathip N. Tetrahedron 2019; 75: 533
- 7b Sangsuwan W, Kongkathip B, Chuawong P, Kongkathip N. Tetrahedron 2017; 73: 7274
- 8a Chuanopparat N, Kongkathip N, Kongkathip B. Tetrahedron Lett. 2012; 53: 6209
- 8b Kongkathip B, Akkarasamiyo S, Kongkathip N. Tetrahedron 2015; 71: 2393