Synlett, Table of Contents Synlett 2024; 35(12): 1453-1457DOI: 10.1055/s-0041-1738457 letter Synthesis of Symmetrical Disulfides by an NIS/PPh3-Mediated Reductive Self-Coupling of Sulfonyl Hydrazides Ashvani Yadav , Amrit Gond , Virendra Prasad∗ Recommend Article Abstract Buy Article All articles of this category Abstract The present study discloses an NIS/PPh3-mediated reductive self-coupling of arylsulfonyl hydrazides to prepare symmetric diaryl disulfides. This methodology has a broad functional-group tolerance and a high scalability. This strategy permits the introduction of sulfonyl hydrazides into the synthesis of symmetrical organic disulfides without the use of a catalyst or base, and symmetrical aromatic disulfides can be prepared in moderate to excellent isolated yields from inexpensive and readily available starting materials. Key words Key wordsdisulfides - arylsulfonyl hydrazides - aryl disulfides - reductive coupling Full Text References References and Notes 1a Gardiner DM, Waring P, Howlett BJ. Microbiology 2005; 151: 1021 1b Welch TR, Williams RM. Nat. Prod. Rep. 2014; 31: 1376 1c Li G.-Y, Li B.-G, Yang T, Yan J.-F, Liu G.-Y, Zhang G.-L. J. Nat. Prod. 2006; 69: 1374 1d Sun Y, Takada K, Takemoto Y, Yoshida M, Nogi Y, Okada S, Matsunaga S. J. Nat. Prod. 2012; 75: 111 1e Scharf D, Habel A, Heinekamp T, Brakhage A, Hertweck C. J. Am. Chem. Soc. 2014; 136: 11674 1f Chankhamjon P, Boettger-Schmidt D, Scherlach K, Urbansky B, Lackner G, Kalb D, Dahse H.-M, Hoffmeister D, Hertweck C. Angew. Chem. Int. Ed. 2014; 53: 13409 1g Kondo T, Mitsudo T.-a. Chem. Rev. 2000; 100: 3205 1h Taniguchi N. J. Org. Chem. 2007; 72: 1241 1i Talla A, Driessen B, Straathof NJ. W, Milroy L.-G, Brunsveld L, Hessel V, Noël T. Adv. Synth. Catal. 2015; 357: 2180 1j Zhang L, Chou CP, Moo-Young M. Biotechnol. Adv. 2011; 29: 923 1k Schmidt B, Ho L, Hogg PJ. Biochemistry 2006; 45: 7429 1l Ostrem JM, Peters U, Sos ML, Wells JA, Shokat KM. Nature 2013; 503: 548 2a Movassagh B, Sobhani S, Kheirdoush F, Fadaei Z. Synth. Commun. 2003; 33: 3103 2b Ye L.-m, Chen J, Mao P, Zhao X.-j, Yan M. Tetrahedron Lett. 2017; 58: 2743 2c Wen Z, Li X, Zuo D, Lang B, Wu Y, Jiang M, Ma H, Bao K, Wu Y, Zhang W. Sci. Rep. 2016; 6: 23986 2d Wadhwa P, Kharbanda A, Sharma A. Asian J. Org. Chem. 2018; 7: 634 2e Bartolozzi A, Foudoulakis HM, Cole BM. Synthesis 2008; 2023 2f Banerjee S, Adak L, Ranu BC. Tetrahedron Lett. 2012; 53: 2149 3a Kodama S, Nishinaka E, Nomoto A, Sonoda M, Ogawa A. Tetrahedron Lett. 2007; 48: 6312 3b Chauhan P, Mahajan S, Enders D. Chem. Rev. 2014; 114: 8807 3c Yamagiwa N, Suto Y, Torisawa Y. Bioorg. Med. Chem. Lett. 2007; 17: 6197 3d Taniguchi N. Synlett 2008; 849 4 Zhang L, Chou CP, Moo-Young M. Biotechnol. Adv. 2011; 29: 923 5a Argüello-García R, Medina-Campos ON, Pérez-Hernández N, Pedraza-Chaverrí J, Ortega-Pierres G. J. Agric. Food Chem. 2010; 58: 11226 5b Chu H.-L, Wang B.-S, Duh P.-D. J. Agric. Food Chem. 2009; 57: 7072 6 Otto S. Acc. Chem. Res. 2012; 45: 2200 7a Sepúlveda CS, García CC, Levingston Macleod JM, López N, Damonte EB. PLoS One 2013; 8: e81251 7b Lara HH, Ixtepan-Turrent L, Garza-Treviño EN, Flores-Teviño SM, Borkow G, Rodriguez-Padilla C. Virol. J. 2011; 8: 137 7c García CC, Topisirovic I, Djavani M, Borden KL, Damonte EB, Salvato MS. Biochem. Biophys. Res. Commun. 2010; 393: 625 8 Musiejuk M, Witt DD. Org. Prep. Proced. Int. 2015; 47: 95 9a Mandal B, Basu B. RSC Adv. 2014; 4: 13854 9b Witt D. Synthesis 2008; 2491 10a Yang F.-L, Tian S.-K. Angew. Chem. Int. Ed. 2013; 52: 4929 10b Wei Y, Liu P, Liu Y, He J, Li X, Li S, Zhao J. Org. Biomol. Chem. 2021; 19: 3932 10c Balgotra S, Verma PK, Kour J, Gupta S, Vishwakarma RA, Sawant SD. ChemistrySelect 2018; 3: 2800 10d Zhu F, Wu X.-F. J. Org. Chem. 2018; 83: 13612 11a Maurya CK, Mazumder A, Kumar A, Gupta PK. Synlett 2016; 27: 409 11b Soleiman-Beigi M, Yavari I, Sadeghizadeh F. RSC Adv. 2015; 5: 87564 11c Soleiman-Beigi M, Arzehgar Z. Synlett 2018; 29: 986 11d Devi N, Hazarika S, Gogoi P, Barman P. Synth. Commun. 2018; 48: 1927 12 Yang F.-L, Yang G, Yu B.-K, Jin Y.-X, Tian S.-K. Adv. Synth. Catal. 2016; 358: 3368 13a Kabalka GW, Reddy MS, Yao M.-L. Tetrahedron Lett. 2009; 50: 7340 13b Wu Z, Li Y.-CDing W.-Z, Zhu T, Liu S.-Z, Ren X, Zou L.-H. Asian J. Chem. 2016; 5: 625 13c Wang D, Liang X, Xiong M, Zhu H, Zhou Y, Pan Y. Org. Biomol. Chem. 2020; 18: 4447 14 1,2-Di-p-tolyl Disulfide (2a); Typical Procedure of Synthesis: A 50 mL round-bottomed flask equipped with a magnetic stirring bar was charged with 1a (50 mg, 0.268 mmol), NIS (150.0 mg, 0.670 mmol), and PPh3 (210.0, 0.804 mmol) in CH3CN (2 mL). The flask was placed in a preheated oil bath at 80 °C, and the mixture stirred under reflux for 8 h, then cooled to r.t. The CH3CN was evaporated under reduced pressure, then the crude mixture was diluted with EtOAc and extracted with sat. aq Na2S2O3. The resulting organic solution was dried (Na2SO4) and concentrated under reduced pressure. The crude product was purified by column chromatography [silica gel, EtOAc–hexane (1:9)] to give a white solid; yield: 62.7 mg (95%, 0.252 mmol); mp 43–45 °C. 1H NMR (500 MHz, CDCl3): δ = 7.39 (d, J = 8.0 Hz, 4 H), 7.12 (d, J = 8.0 Hz, 4 H), 2.33 (s, 6 H). 13C NMR (125 MHz, CDCl3): δ = 137.5, 134.0, 129.8, 128.6, 21.1. Supplementary Material Supplementary Material Supporting Information