Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2024; 35(12): 1453-1457
DOI: 10.1055/s-0041-1738457
DOI: 10.1055/s-0041-1738457
letter
Synthesis of Symmetrical Disulfides by an NIS/PPh3-Mediated Reductive Self-Coupling of Sulfonyl Hydrazides
This research work has been supported financially by the Science and Engineering Research Board, New Delhi (Grant no. EEQ/2021/000270) and IOE, Banaras Hindu University.
Abstract
The present study discloses an NIS/PPh3-mediated reductive self-coupling of arylsulfonyl hydrazides to prepare symmetric diaryl disulfides. This methodology has a broad functional-group tolerance and a high scalability. This strategy permits the introduction of sulfonyl hydrazides into the synthesis of symmetrical organic disulfides without the use of a catalyst or base, and symmetrical aromatic disulfides can be prepared in moderate to excellent isolated yields from inexpensive and readily available starting materials.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0041-1738457
- Supporting Information
Publication History
Received: 21 August 2023
Accepted after revision: 10 October 2023
Article published online:
10 November 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Gardiner DM, Waring P, Howlett BJ. Microbiology 2005; 151: 1021
- 1b Welch TR, Williams RM. Nat. Prod. Rep. 2014; 31: 1376
- 1c Li G.-Y, Li B.-G, Yang T, Yan J.-F, Liu G.-Y, Zhang G.-L. J. Nat. Prod. 2006; 69: 1374
- 1d Sun Y, Takada K, Takemoto Y, Yoshida M, Nogi Y, Okada S, Matsunaga S. J. Nat. Prod. 2012; 75: 111
- 1e Scharf D, Habel A, Heinekamp T, Brakhage A, Hertweck C. J. Am. Chem. Soc. 2014; 136: 11674
- 1f Chankhamjon P, Boettger-Schmidt D, Scherlach K, Urbansky B, Lackner G, Kalb D, Dahse H.-M, Hoffmeister D, Hertweck C. Angew. Chem. Int. Ed. 2014; 53: 13409
- 1g Kondo T, Mitsudo T.-a. Chem. Rev. 2000; 100: 3205
- 1h Taniguchi N. J. Org. Chem. 2007; 72: 1241
- 1i Talla A, Driessen B, Straathof NJ. W, Milroy L.-G, Brunsveld L, Hessel V, Noël T. Adv. Synth. Catal. 2015; 357: 2180
- 1j Zhang L, Chou CP, Moo-Young M. Biotechnol. Adv. 2011; 29: 923
- 1k Schmidt B, Ho L, Hogg PJ. Biochemistry 2006; 45: 7429
- 1l Ostrem JM, Peters U, Sos ML, Wells JA, Shokat KM. Nature 2013; 503: 548
- 2a Movassagh B, Sobhani S, Kheirdoush F, Fadaei Z. Synth. Commun. 2003; 33: 3103
- 2b Ye L.-m, Chen J, Mao P, Zhao X.-j, Yan M. Tetrahedron Lett. 2017; 58: 2743
- 2c Wen Z, Li X, Zuo D, Lang B, Wu Y, Jiang M, Ma H, Bao K, Wu Y, Zhang W. Sci. Rep. 2016; 6: 23986
- 2d Wadhwa P, Kharbanda A, Sharma A. Asian J. Org. Chem. 2018; 7: 634
- 2e Bartolozzi A, Foudoulakis HM, Cole BM. Synthesis 2008; 2023
- 2f Banerjee S, Adak L, Ranu BC. Tetrahedron Lett. 2012; 53: 2149
- 3a Kodama S, Nishinaka E, Nomoto A, Sonoda M, Ogawa A. Tetrahedron Lett. 2007; 48: 6312
- 3b Chauhan P, Mahajan S, Enders D. Chem. Rev. 2014; 114: 8807
- 3c Yamagiwa N, Suto Y, Torisawa Y. Bioorg. Med. Chem. Lett. 2007; 17: 6197
- 3d Taniguchi N. Synlett 2008; 849
- 4 Zhang L, Chou CP, Moo-Young M. Biotechnol. Adv. 2011; 29: 923
- 5a Argüello-García R, Medina-Campos ON, Pérez-Hernández N, Pedraza-Chaverrí J, Ortega-Pierres G. J. Agric. Food Chem. 2010; 58: 11226
- 5b Chu H.-L, Wang B.-S, Duh P.-D. J. Agric. Food Chem. 2009; 57: 7072
- 6 Otto S. Acc. Chem. Res. 2012; 45: 2200
- 7a Sepúlveda CS, García CC, Levingston Macleod JM, López N, Damonte EB. PLoS One 2013; 8: e81251
- 7b Lara HH, Ixtepan-Turrent L, Garza-Treviño EN, Flores-Teviño SM, Borkow G, Rodriguez-Padilla C. Virol. J. 2011; 8: 137
- 7c García CC, Topisirovic I, Djavani M, Borden KL, Damonte EB, Salvato MS. Biochem. Biophys. Res. Commun. 2010; 393: 625
- 8 Musiejuk M, Witt DD. Org. Prep. Proced. Int. 2015; 47: 95
- 10a Yang F.-L, Tian S.-K. Angew. Chem. Int. Ed. 2013; 52: 4929
- 10b Wei Y, Liu P, Liu Y, He J, Li X, Li S, Zhao J. Org. Biomol. Chem. 2021; 19: 3932
- 10c Balgotra S, Verma PK, Kour J, Gupta S, Vishwakarma RA, Sawant SD. ChemistrySelect 2018; 3: 2800
- 10d Zhu F, Wu X.-F. J. Org. Chem. 2018; 83: 13612
- 11a Maurya CK, Mazumder A, Kumar A, Gupta PK. Synlett 2016; 27: 409
- 11b Soleiman-Beigi M, Yavari I, Sadeghizadeh F. RSC Adv. 2015; 5: 87564
- 11c Soleiman-Beigi M, Arzehgar Z. Synlett 2018; 29: 986
- 11d Devi N, Hazarika S, Gogoi P, Barman P. Synth. Commun. 2018; 48: 1927
- 12 Yang F.-L, Yang G, Yu B.-K, Jin Y.-X, Tian S.-K. Adv. Synth. Catal. 2016; 358: 3368
- 13a Kabalka GW, Reddy MS, Yao M.-L. Tetrahedron Lett. 2009; 50: 7340
- 13b Wu Z, Li Y.-CDing W.-Z, Zhu T, Liu S.-Z, Ren X, Zou L.-H. Asian J. Chem. 2016; 5: 625
- 13c Wang D, Liang X, Xiong M, Zhu H, Zhou Y, Pan Y. Org. Biomol. Chem. 2020; 18: 4447
- 14 1,2-Di-p-tolyl Disulfide (2a); Typical Procedure of Synthesis: A 50 mL round-bottomed flask equipped with a magnetic stirring bar was charged with 1a (50 mg, 0.268 mmol), NIS (150.0 mg, 0.670 mmol), and PPh3 (210.0, 0.804 mmol) in CH3CN (2 mL). The flask was placed in a preheated oil bath at 80 °C, and the mixture stirred under reflux for 8 h, then cooled to r.t. The CH3CN was evaporated under reduced pressure, then the crude mixture was diluted with EtOAc and extracted with sat. aq Na2S2O3. The resulting organic solution was dried (Na2SO4) and concentrated under reduced pressure. The crude product was purified by column chromatography [silica gel, EtOAc–hexane (1:9)] to give a white solid; yield: 62.7 mg (95%, 0.252 mmol); mp 43–45 °C. 1H NMR (500 MHz, CDCl3): δ = 7.39 (d, J = 8.0 Hz, 4 H), 7.12 (d, J = 8.0 Hz, 4 H), 2.33 (s, 6 H). 13C NMR (125 MHz, CDCl3): δ = 137.5, 134.0, 129.8, 128.6, 21.1.