Synlett 2024; 35(07): 747-752 DOI: 10.1055/s-0042-1751487
Insights into the Regioselectivity of Metal-Catalyzed Aryne Reactions
Erin E. Plasek‡
,
Brylon N. Denman‡
,
The University of Minnesota is acknowledged for startup funds. We also acknowledge the National Institutes of Health (NIH) (R35GM146957) for funds. Instrumentation for the UMN Chemistry NMR facility was supported from a grant through the NIH (S10OD011952). E.E.P. was funded by the Newman and Lillian Bortnick fellowship and B.N.D was funded by the Robert and Jill DeMaster fellowship.
Abstract
The synthetic potential of unsymmetrically substituted aryne intermediates is significantly hindered by regioselectivity issues. Current methods for inducing regioselectivity all rely on substrate control and are focused on non-metallated arynes. Before our initial disclosure, there was no systematic study regarding the regioselectivity of metal-catalyzed aryne reactions. By exploiting ligand control, we have induced regioselectivity in a palladium-catalyzed aryne annulation to form phenanthridinones (up to 9:91 r.r.). Through this study we have investigated: ligand effects, influence of steric perturbation, and the impact of the aryne precursor.
1 Introduction
2 Inducing Regioselectivity via Ligand Control
3 A Comparison of o -Borylaryl Triflate Aryne Precursors to Kobayashi Aryne Precursors
4 Conclusion
Key words
catalysts -
ligands -
precursors -
selectivity -
aryne
Publication History
Received: 01 July 2023
Accepted after revision: 31 July 2023
Article published online: 18 September 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References
1
Stoermer R,
Kahlert B.
Ber. Dtsch. Chem. Ges. 1902; 35: 1633
2
Goetz AE,
Bronner SM,
Cisneros JD,
Melamed JM,
Paton RS,
Houk KN,
Garg NK.
Angew. Chem. Int. Ed. 2012; 51: 2758
3
Tadross PM,
Stoltz BM.
Chem. Rev. 2012; 112: 3550
4
Anthony SM,
Wonilowicz LG,
McVeigh MS,
Garg NK.
JACS Au 2021; 1: 897
5
Spence KA,
Chari JV,
Niro MD,
Susick RB,
Ukwitegetse N,
Djurovich PI,
Thompson ME,
Garg NK.
Chem. Sci. 2022; 13: 5884
6
Chari JV,
Spence KA,
Susick RB,
Garg NK.
Nat. Commun. 2021; 12: 3706
7
Shi J,
Li L,
Li Y.
Chem. Rev. 2021; 121: 3892
8
García-López J.-A,
Greaney MF.
Chem. Soc. Rev. 2016; 45: 6766
9
Berthelot-Bréhier A,
Panossian A,
Colobert F,
Leroux FR.
Org. Chem. Front. 2015; 2: 634
10
Shi F,
Waldo JP,
Chen Y,
Larock RC.
Org. Lett. 2008; 10: 2409
11
Dubrovskiy AV,
Markina NA,
Larock RC.
Org. Biomol. Chem. 2012; 11: 191
12
Bhattacharjee S,
Guin A,
Gaykar RN,
Biju AT.
Org. Lett. 2020; 22: 9097
13
Seo JH,
Ko HM.
Tetrahedron Lett. 2018; 59: 671
14
May C,
Moody CJ.
J. Chem. Soc., Chem. Commun. 1984; 926
15
Gribble GW,
Saulnier MG,
Sibi MP,
Obaza-Nutaitis JA.
J. Org. Chem. 1984; 49: 4518
16
Goetz AE,
Garg NK.
J. Org. Chem. 2014; 79: 846
17
Medina JM,
Mackey JL,
Garg NK,
Houk KN.
J. Am. Chem. Soc. 2014; 136: 15798
18
Kanemoto K,
Sakata Y,
Hosoya T,
Yoshida S.
Chem. Lett. 2020; 49: 593
19
Goetz AE,
Garg NK.
Nat. Chem. 2013; 5: 54
20
Sumida Y,
Sumida T,
Hashizume D,
Hosoya T.
Org. Lett. 2016; 18: 5600
21
Huang X,
Sha F,
Tong J.
Adv. Synth. Catal. 2010; 352: 379
22
Jeganmohan M,
Bhuvaneswari S,
Cheng C.-H.
Angew. Chem. Int. Ed. 2009; 48: 391
23
Henderson JL,
Edwards AS,
Greaney MF.
Org. Lett. 2007; 9: 5589
24
Bhuvaneswari S,
Jeganmohan M,
Cheng C.-H.
Org. Lett. 2006; 8: 5581
25
Chatani N,
Kamitani A,
Oshita M,
Fukumoto Y,
Murai S.
J. Am. Chem. Soc. 2001; 123: 12686
26
Feng M,
Tang B,
Xu H.-X,
Jiang X.
Org. Lett. 2016; 18: 4352
27
Xie C,
Liu L,
Zhang Y,
Xu P.
Org. Lett. 2008; 10: 2393
28
Bhuvaneswari S,
Jeganmohan M,
Cheng C.-H.
Chem. Commun. 2008; 5013
29
Peng X,
Ma C,
Tung C.-H,
Xu Z.
Org. Lett. 2016; 18: 4154
30
Zeng Y,
Li G,
Hu J.
Angew. Chem. Int. Ed. 2015; 54: 10773
31
Reiner BR,
Tonks IA.
Inorg. Chem. 2019; 58: 10508
32
Jayanth TT,
Jeganmohan M,
Cheng C.-H.
Org. Lett. 2005; 7: 2921
33
Jayanth TT,
Cheng C.-H.
Angew. Chem. Int. Ed. 2007; 46: 5921
34
Qiu Z,
Xie Z.
Angew. Chem. Int. Ed. 2009; 48: 5729
35
Lin Y,
Wu L,
Huang X.
Eur. J. Org. Chem. 2011; 2993
36
Yang Y,
Huang H,
Wu L,
Liang Y.
Org. Biomol. Chem. 2014; 12: 5351
37
Li R.-J,
Pi S.-F,
Liang Y,
Wang Z.-Q,
Song R.-J,
Chen G.-X,
Li J.-H.
Chem. Commun. 2009; 46: 8183
38
Pi S.-F,
Yang X.-H,
Huang X.-C,
Liang Y,
Yang G.-N,
Zhang X.-H,
Li J.-H.
J. Org. Chem. 2010; 75: 3484
39
Pi S.-F,
Tang B.-X,
Li J.-H,
Liu Y.-L,
Liang Y.
Org. Lett. 2009; 11: 2309
40
Yao T,
He D.
Org. Lett. 2017; 19: 842
41
Liu Z,
Larock RC.
Angew. Chem. Int. Ed. 2007; 46: 2535
42
Yoshida H,
Honda Y,
Shirakawa E,
Hiyama T.
Chem. Commun. 2001; 1880
43
Tang C.-Y,
Wu X.-Y,
Sha F,
Zhang F,
Li H.
Tetrahedron Lett. 2014; 55: 1036
44
Garve LK. B,
Werz DB.
Org. Lett. 2015; 17: 596
45
Zeng Y,
Hu J.
Org. Lett. 2016; 18: 856
46
Zeng Y,
Zhang L,
Zhao Y,
Ni C,
Zhao J,
Hu J.
J. Am. Chem. Soc. 2013; 135: 2955
47
Jeganmohan M,
Cheng C.-H.
Synthesis 2005; 1693
48
Henderson JL,
Edwards AS,
Greaney MF.
J. Am. Chem. Soc. 2006; 128: 7426
49
Helmchen G,
Pfaltz A.
Acc. Chem. Res. 2000; 33: 336
50
Behenna DC,
Stoltz BM.
J. Am. Chem. Soc. 2004; 126: 15044
51
Margalef J,
Biosca M,
de la Cruz Sánchez P,
Faiges J,
Pàmies O,
Diéguez M.
Coord. Chem. Rev. 2021; 446: 214120
52
Connon R,
Roche B,
Rokade BV,
Guiry PJ.
Chem. Rev. 2021; 121: 6373
53
Blackham EE,
Booker-Milburn KI.
Angew. Chem. Int. Ed. 2017; 56: 6613
54
Sun Z.-M,
Zhang J,
Zhao P.
Org. Lett. 2010; 12: 992
55
Coeffard V,
Guiry PJ.
Curr. Org. Chem. 2010; 14: 212
56
Endo K,
Grubbs RH.
J. Am. Chem. Soc. 2011; 133: 8525
57
Paradiso V,
Costabile C,
Grisi F.
Beilstein J. Org. Chem. 2018; 14: 3122
58
Lu C,
Dubrovskiy AV,
Larock RC.
J. Org. Chem. 2012; 77: 8648
59
Aleti RR,
Festa AA,
Voskressensky LG,
Van der Eycken EV.
Molecules 2021; 26: 5560
60
Denman BN,
Plasek EE,
Roberts CC.
Organometallics 2023; 42: 859
61
Jover J,
Cirera J.
Dalton Trans. 2019; 15036
62
Tolman CA.
Chem. Rev. 1977; 77: 313
63
Coll DS,
Vidal AB,
Rodríguez JA,
Ocando-Mavárez E,
Añez R,
Sierraalta A.
Inorg. Chim. Acta 2015; 436: 163
64
Sigman MS,
Miller JJ.
J. Org. Chem. 2009; 74: 7633
65
Zahrt AF,
Athavale SV,
Denmark SE.
Chem. Rev. 2020; 120: 1620
66
Guan Y,
Buivydas TA,
Lalisse RF,
Attard JW,
Ali R,
Stern C,
Hadad CM,
Mattson AE.
ACS Catal. 2021; 11: 6325
67
Saint-Denis TG,
Lam NY. S,
Chekshin N,
Richardson PF,
Chen JS,
Elleraas J,
Hesp KD,
Schmitt DC,
Lian Y,
Huh CW,
Yu J.-Q.
ACS Catal. 2021; 11: 9738
68
Mantilli L,
Gérard D,
Torche S,
Besnard C,
Mazet C.
Chem. Eur. J. 2010; 16: 12736
69
García-López J.-A,
Greaney MF.
Org. Lett. 2014; 16: 2338