Subscribe to RSS
DOI: 10.1055/s-0042-1751543
Esterification as a Demonstration of Electrochemically Powered Catalytic Dehydration
E.D.N. thanks the American Chemical Society Petroleum Research Fund for a Doctoral New Investigator Grant (Award 65252-DNI). The authors are grateful for financial support from The Pennsylvania State University, Eberly College of Science.
Abstract
The reliance on wasteful stoichiometric reagents to accomplish dehydration reactions such as esterification, amidation, and alcohol substitution is a longstanding challenge in synthetic chemistry. To address this problem, an electrochemical approach has been developed as a new conceptual platform for dehydration reactions. As a proof-of-concept demonstration, an electrochemical esterification protocol has been described that proceeds at room temperature, without acid or base additives, and without consuming stoichiometric reagents. This approach therefore overcomes key complications of esterification chemistry, and we envision that it will similarly enable improvements to a range of important, related transformations.
1 Introduction
2 An Electrochemical Design for Catalytic Dehydration
3 Electrochemical Esterification
4 Conclusions
Publication History
Received: 21 November 2023
Accepted: 29 November 2023
Article published online:
10 January 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Comprehensive Organic Synthesis, Vol. 6, 2nd ed. . Knochel P. Elsevier; Amsterdam: 2014: 1-841
- 1b Godwin AD. Plasticizers . In Applied Polymer Science: 21st Century . Craver C, Carraher C. Elsevier; Amsterdam: 2000: 157-175
- 1c Yadav GD, Mujeebur Rahuman MS. M. Clean Technol. Environ. Policy 2003; 5: 128
- 1d McGrath NA, Brichacek M, Njardarson JT. J. Chem. Educ. 2010; 87: 1348
- 1e Ertl P, Altmann E, McKenna JM. J. Med. Chem. 2020; 63: 8408
- 2a Jordan A, Whymark KD, Sydenham J, Sneddon HF. Green Chem. 2021; 23: 6406
- 2b Magano J. Org. Process Res. Dev. 2022; 26: 1562
- 3a Pattabiraman VR, Bode JW. Nature 2011; 480: 471
- 3b Williams JM. J. OH Activation for Nucleophilic Substitution . In Sustainable Catalysis . Dunn PJ, Hii KK, Krische MJ, Williams MT. John Wiley & Sons; Hoboken: 2013: 121
- 3c Sabatini MT, Boulton LT, Sneddon HF, Sheppard TD. Nat. Catal. 2019; 2: 10
- 3d Wang X. Nat. Catal. 2019; 2: 98
- 3e Pedrood K, Bahadorikhalili S, Lotfi V, Larijani B, Mahdavi M. Mol. Diversity 2022; 26: 1311
- 3f Taussat A, de Figueiredo RM, Campagne J.-M. Catalysts 2024; 13: 13
- 4a Constable DJ. C, Dunn PJ, Hayler JD, Humphrey GR, Leazer JJ. L, Linderman RJ, Lorenz K, Manley J, Pearlman BA, Wells A, Zaks A, Zhang TY. Green Chem. 2007; 9: 411
- 4b Bryan MC, Dunn PJ, Entwistle D, Gallou F, Koenig SG, Hayler JD, Hickey MR, Hughes S, Kopach ME, Moine G, Richardson P, Roschangar F, Steven A, Weiberth FJ. Green Chem. 2018; 20: 5082
- 5a Henkel T, Brunne RM, Müller H, Reichel F. Angew. Chem. Int. Ed. 1999; 38: 643
- 5b Ertl P, Schuhmann T. J. Nat. Prod. 2019; 82: 1258
- 6a Brown DG, Bostrom J. J. Med. Chem. 2016; 59: 4443
- 6b Tsakos M, Schaffert ES, Clement LL, Villadsen NL, Poulsen TB. Nat. Prod. Rep. 2015; 32: 605
- 7 Han J, Haines CA, Piane JJ, Filien LL, Nacsa ED. J. Am. Chem. Soc. 2023; 145: 15680
- 8a Otera J, Danoh N, Nozaki H. J. Org. Chem. 1991; 56: 5307
- 8b Masaki Y, Tanaka N, Miura T. Chem. Lett. 1997; 26: 55
- 8c Storck S, Maier WF, Miranda Salvado IM, Ferreira JM. F, Guhl D, Souverijns W, Martens JA. J. Catal. 1997; 172: 414
- 8d Okuhara T, Kimura M, Kawai T, Xu Z, Nakato T. Catal. Today 1998; 45: 73
- 8e Zhang G.-S. Synth. Commun. 1999; 29: 607
- 8f Ishihara K, Ohara S, Yamamoto H. Science 2000; 290: 1140
- 8g Wakasugi K, Misaki T, Yamada K, Tanabe Y. Tetrahedron Lett. 2000; 41: 5249
- 8h Manabe K, Sun XM, Kobayashi S. J. Am. Chem. Soc. 2001; 123: 10101
- 8i Ishihara K, Nakayama M, Ohara S, Yamamoto H. Tetrahedron 2002; 58: 8179
- 8j Manabe K, Iimura S, Sun XM, Kobayashi S. J. Am. Chem. Soc. 2002; 124: 11971
- 8k Manabe K, Kobayashi S. Adv. Synth. Catal. 2002; 344: 270
- 8l Hoydonckx HE, De Vos DE, Chavan SA, Jacobs PA. Top. Catal. 2004; 27: 83
- 8m Ishihara K, Nakagawa S, Sakakura A. J. Am. Chem. Soc. 2005; 127: 4168
- 8n Velusamy S, Borpuzari S, Punniyamurthy T. Tetrahedron 2005; 61: 2011
- 8o Funatomi T, Wakasugi K, Misaki T, Tanabe Y. Green Chem. 2006; 8: 1022
- 8p Sakakura A, Nakagawa S, Ishihara K. Tetrahedron 2006; 62: 422
- 8q Weng S.-S, Chen F.-K, Ke C.-S. Synth. Commun. 2013; 43: 2615
- 8r Hou F, Wang XC, Quan ZJ. Org. Biomol. Chem. 2018; 16: 9472
- 8s Beddoe RH, Andrews KG, Magne V, Cuthbertson JD, Saska J, Shannon-Little AL, Shanahan SE, Sneddon HF, Denton RM. Science 2019; 365: 910
- 8t Wolzak LA, Vlugt JI, Berg KJ, Reek JN. H, Tromp M, Korstanje TJ. ChemCatChem 2020; 12: 5229
- 8u Zheng Y, Zhao Y, Tao S, Li X, Cheng X, Jiang G, Wan X. Eur. J. Org. Chem. 2021; 2713
- 8v Sripada S, Kastner JR. Ind. Eng. Chem. Res. 2022; 61: 3928
- 8w Yao P, Gong H, Wu Z.-Y, Fu H, Li B, Zhu B, Ji J, Wang X, Xu N, Tang C, Zhang H, Zhu J. Nat. Sustainability 2022; 5: 348
- 9a Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
- 9b Wiebe A, Gieshoff T, Mohle S, Rodrigo E, Zirbes M, Waldvogel SR. Angew. Chem. Int. Ed. 2018; 57: 5594
- 9c Leech MC, Garcia AD, Petti A, Dobbs AP, Lam K. React. Chem. Eng. 2020; 5: 977
- 9d Schotten C, Nicholls TP, Bourne RA, Kapur N, Nguyen BN, Willans CE. Green Chem. 2020; 22: 3358
- 9e Siu JC, Fu N, Lin S. Acc. Chem. Res. 2020; 53: 547
- 9f Bortnikov EO, Semenov SN. Curr. Opin. Electrochem. 2022; 35: 101050
- 9g Leech MC, Lam K. Nat. Rev. Chem. 2022; 6: 275
- 10a Svaan M, Parker VD. Acta Chem. Scand., Ser. B 1982; 36: 351
- 10b Kowalski JA, Casselman MD, Kaur AP, Milshtein JD, Elliott CF, Modekrutti S, Attanayake NH, Zhang N, Parkin SR, Risko C, Brushett FR, Odom SA. J. Mater. Chem. A 2017; 5: 24371
- 10c Attanayake NH, Kowalski JA, Greco KV, Casselman MD, Milshtein JD, Chapman SJ, Parkin SR, Brushett FR, Odom SA. Chem. Mater. 2019; 31: 4353
- 11a Hammerich O, Parker VD. Acta Chem. Scand., Ser. B 1983; 37: 303
- 11b Zhao W, Shine HJ. Can. J. Chem. 1998; 76: 695
- 11c Liu B, Shine HJ, Zhao W. J. Phys. Org. Chem. 1999; 12: 827
- 11d Li Y, Wang H, Zhang H, Lei A. Chin. J. Chem. 2021; 39: 3023