Synlett 2024; 35(01): 113-117
DOI: 10.1055/s-0042-1752654
cluster
Functional Dyes

Photooxidative Coupling of Thiols Promoted by Bromo(trichloro)methane in a Basic Aqueous Medium

Shiquan Shan
a   Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering (SCME), Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University (Nanjing Tech), Nanjing 211816, P. R. of China
,
Songhao Pang
a   Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering (SCME), Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University (Nanjing Tech), Nanjing 211816, P. R. of China
,
Yunwei Qu
b   The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, P. R. of China
,
Yongna Lu
a   Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering (SCME), Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University (Nanjing Tech), Nanjing 211816, P. R. of China
,
Xiamin Cheng
a   Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering (SCME), Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University (Nanjing Tech), Nanjing 211816, P. R. of China
,
Lin Li
b   The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, P. R. of China
› Author Affiliations
This work was supported by Nanjing Tech University (Start-up Grants Nos. 38274017101 and 3827401742).


Abstract

A transition-metal- and organic-solvent-free oxidative coupling of thiols catalyzed by BrCCl3 and NaOH in an aqueous medium with oxygen as a green oxidant was established The facile and green method has a broad substrate scope in converting thiols into the corresponding disulfides with medium to excellent yields (up to 91%). This method could potentially be used to construct bioactive molecules containing disulfide bonds and to label bioactive molecules with disulfide bonds.

Supporting Information



Publication History

Received: 14 January 2023

Accepted: 17 February 2023

Article published online:
31 March 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Waldman AJ, Ng TL, Wang P, Balskus EP. Chem. Rev. 2017; 117: 5784
    • 2a Lei J, Zhang Q, Jin X, Lu H, Wang S, Li T, Sheng Y, Zhang F, Zheng Y. Mol. Pharmaceutics 2021; 18: 2777
    • 2b Su Z, Xiao D, Xie F, Liu L, Wang Y, Fan S, Zhou X, Li S. Acta Pharm. Sin. B 2021; 11: 3889
  • 4 Ali MH, McDermott M. Tetrahedron Lett. 2002; 43: 6271
  • 5 Cheng J, Miller CJ. J. Phys. Chem. B 1997; 101: 1058
  • 6 Vandavasi JK, Hu W.-P, Chen C.-Y, Wang J.-J. Tetrahedron 2011; 67: 8895
  • 7 Tajbakhsh M, Hosseinzadeh R, Shakoori A. Tetrahedron Lett. 2004; 45: 1889
  • 8 Misra AK, Agnihotri G. Synth. Commun. 2004; 34: 1079
  • 9 Iranpoor N, Firouzabadi H, Zolfigol MA. Synth. Commun. 1998; 28: 367
  • 10 Montazerozohori M, Fradombe LZ. Phosphorus, Sulfur Silicon Relat. Elem. 2010; 185: 509
  • 11 Saxena A, Kumar A, Mozumdar S. J. Mol. Catal. A: Chem. 2007; 269: 35
  • 12 Zhang Y, Yang D, Li Y, Zhao X, Wang B, Qu J. Catal. Sci. Technol. 2019; 9: 6492
    • 13a Chai PJ, Li YS, Tan CX. Chin. Chem. Lett. 2011; 22: 1403
    • 13b Dou Y, Huang X, Wang H, Yang L, Li H, Yuan B, Yang G. Green Chem. 2017; 19: 2491
  • 14 Li X.-B, Li Z.-J, Gao Y.-J, Meng Q.-Y, Yu S, Weiss RG, Tung C.-H, Wu L.-Z. Angew. Chem. Int. Ed. 2014; 53: 2085
  • 15 Dethe DH, Srivastava A, Dherange BD, Kumar BV. Adv. Synth. Catal. 2018; 360: 3020
  • 16 Yusuf M, Song S, Park S, Park KH. Appl. Catal., A 2021; 613: 118025
  • 17 Oba M, Tanaka K, Nishiyama K, Ando W. J. Org. Chem. 2011; 76: 4173
    • 18a Gu Z, Herrmann AT, Zakarian A. Angew. Chem. Int. Ed. 2011; 50: 7136
    • 18b Tucker JW, Zhang Y, Jamison TF, Stephenson CR. J. Angew. Chem. Int. Ed. 2012; 51: 4144
    • 18c Huo H, Wang C, Harms K, Meggers E. J. Am. Chem. Soc. 2015; 137: 9551
    • 18d Yang W, Hu W, Dong X, Li X, Sun J. Angew. Chem. Int. Ed. 2016; 55: 15783
    • 18e Larionov E, Mastandrea MM, Pericàs MA. ACS Catal. 2017; 7: 7008
    • 19a Freeman DB, Furst L, Condie AG, Stephenson CR. J. Org. Lett. 2012; 14: 94
    • 19b Franz JF, Kraus WB, Zeitler K. Chem. Commun. 2015; 51: 8280
    • 20a Barks JM, Gilbert BC, Parsons AF, Upeandran B. Tetrahedron Lett. 2000; 41: 6249
    • 20b Tucker JW, Narayanam JM. R, Shah PS, Stephenson CR. J. Chem. Commun. 2011; 47: 5040
    • 20c Xiang M, Meng Q.-Y, Gao X.-W, Lei T, Chen B, Tung C.-H, Wu L.-Z. Org. Chem. Front. 2016; 3: 486
  • 21 Williams DR, Lowder PD, Gu Y.-G, Brooks DA. Tetrahedron Lett. 1997; 38: 331
  • 22 Chorell E, Das P, Almqvist F. J. Org. Chem. 2007; 72: 4917
  • 23 Li X, Fan J, Cui D, Yan H, Shan S, Lu Y, Cheng X, Loh T.-P. Eur. J. Org. Chem. 2022; 2022: e202200340
  • 24 Disulfides 2, 4, and 6; General ProcedureA round-bottomed flask was charged with the appropriate thiol 1, 3, or 5 (0.4 mmol), BrCCl3 (0.04 mmol), NaOH (0.1 mmol), and H2O (0.5 mL). The mixture was then irradiated by a 23 W CFL with stirring at 60 °C for 12–18 h. When the reaction was complete, volatiles were removed in vacuo to give the crude product, which was purified by chromatography (silica gel).Diphenyl Disulfide1 (2a)White solid; yield: 24.5 mg (61%), Rf = 0.71 (PE). 1H NMR (400 MHz, CDCl3): δ = 7.50–7.46 (m, 4 H), 7.30–7.23 (m, 4 H), 7.23–7.16 (m, 2 H). 13C NMR (101 MHz, CDCl3): δ = 137.09, 129.17, 127.54, 127.24.
  • 25 Fang Z, Su Z, Qin W, Li H, Fang B, Du W, Wu Q, Peng B, Li P, Yu H, Li L, Huang W. Chin. Chem. Lett. 2020; 31: 2903