Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett
DOI: 10.1055/s-0043-1773522
DOI: 10.1055/s-0043-1773522
letter
Catalyst-Free Radical Dearomatization of Phenols with Aryldiazonium Tetrafluoroborates and DABCO·(SO2)2
We gratefully acknowledge financial support from the National Natural Science Foundation of China (22277108, 22471189), the Natural Science Foundation of Zhejiang Province (LY22B020003), and Taizhou Science and Technology Project (24gya02).

Abstract
A catalyst-free, three-component dearomatization of phenols with aryldiazonium tetrafluoroborates and DABCO·(SO2)2 has been developed for the synthesis of 4-(arylsulfonyl)cyclohex-2,5-dien-1-one scaffolds. This method offers mild reaction conditions and high step efficiency, providing a green and efficient strategy for the dearomatization of phenols. Mechanistic studies indicated that this transformation relies on a tandem radical sulfur dioxide insertion process.
Key words
dearomatization - phenols - sulfur dioxide insertion - catalyst-free reaction - aryldiazonium tetrafluoroborates - arylsulfonylcyclohexadienonesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0043-1773522.
- Supporting Information
- CIF File
Publication History
Received: 17 December 2024
Accepted after revision: 21 January 2025
Article published online:
04 March 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References and Notes
- 1 Prinsep MR, Blunt JW, Munro MH. G. J. Nat. Prod. 1991; 54: 1068
- 2 Ilardi EA, Vitaku E, Njardarson JT. J. Med. Chem. 2014; 57: 2832
- 3 Shi R, Wang B, Stelitano G, Wu X, Shan Y, Wu Y, Wang X, Chiarelli LR, Lu Y, Qiao C. ACS Med. Chem. Lett. 2022; 13: 593
- 4 Feng M, Tang B, Liang SH, Jiang X. Curr. Top. Med. Chem. 2016; 16: 1200
- 5 Siddique W, Zaman M, Sarfraz RM, Butt MH, Ur Rehman A, Fassih N, Bayram GM, Albadrani R, Alfaifi MY, Abdel-Daim MM. Polymers 2022; 14: 3981
- 6 Almirante L, Polo L, Mugnaini A, Provinciali E, Rugarli P, Biancotti A, Gamba A, Murmann W. J. Med. Chem. 1965; 8: 305
- 7 Tucker H, Chesterson GJ. J. Med. Chem. 1988; 31: 885
- 8 Liu N.-W, Liang S, Manolikakes G. Synthesis 2016; 48: 1939
- 9 Blum SP, Hofman K, Manolikakes G, Waldvogel SR. Chem. Commun. 2021; 57: 8236
- 10 Sato K, Hyodo M, Aoki M, Zheng X.-Q, Noyori R. Tetrahedron 2001; 57: 2469
- 11 Rodríguez CM, Ode JM, Palazon JM, Martin VS. Tetrahedron 1992; 48: 3571
- 12 Bryliakov KP, Talsi EP. Eur. J. Org. Chem. 2008; 3369
- 13 Saidi O, Marafie J, Ledger AE. W, Liu PM, Mahon MF, Kociok-Köhn G, Whittlesey MK, Frost CG. J. Am. Chem. Soc. 2011; 133: 19298
- 14 Zhao X, Dimitrijević E, Dong VM. J. Am. Chem. Soc. 2009; 131: 3466
- 15 Ueda M, Hartwig JF. Org. Lett. 2010; 12: 92
- 16 Ye S, Yang M, Wu J. Chem. Commun. 2020; 56: 4145
- 17 Zheng D, An Y, Li Z, Wu J. Angew. Chem. Int. Ed. 2014; 53: 2451
- 18 Zheng D, Yu J, Wu J. Angew. Chem. Int. Ed. 2016; 55: 11925
- 19 Zhang C, Tang Z, Qiu Y, Tang J, Ye S, Li Z, Wu J. Chem. Catal. 2022; 2: 164
- 20 Qiu G, Zhou K, Gao L, Wu J. Org. Chem. Front. 2018; 5: 691
- 21 Cheng G, Lian Z. Eur. J. Org. Chem. 2023; 26: e202300217
- 22 Andrews JA, Willis ML. Synthesis 2022; 54: 1695
- 23a He F.-S, Yang M, Ye S, Wu J. Chin. Chem. Lett. 2021; 32: 464
- 23b Zhang J, Cen J, Ye S, Zheng D, Wu J. Adv. Synth. Catal. 2024; 366: 3130
- 23c Yu M, Lin S, Zhang S, Lin X, Huang X. Org. Chem. Front. 2024; 11: 4284
- 24 Zhang J, An Y, Wu J. Chem. Eur. J. 2017; 23: 9477
- 25 Zhou K, Zhang J, Lai L, Cheng J, Sun J, Wu J. Chem. Commun. 2018; 54: 7459
- 26 He F.-S, Bao P, Tang Z, Yu F, Deng W.-P, Wu J. Org. Lett. 2022; 24: 2955
- 27 He Z, Li Z, Lai S, Li H. Org. Lett. 2024; 26: 6652
- 28 Wang H, Sun S, Cheng J. Org. Lett. 2017; 19: 5844
- 29 Das P, Das S, Varalaxmi K, Jana R. Adv. Synth. Catal. 2021; 363: 575
- 30 Zhang S, Zhang Q, Lin S, Lin X, Huang X. RSC Adv. 2024; 14: 14697
- 31 Qi Z, Wen S.-M, Wu Q, Jiang D.-F, Hao W.-J, Jiang B. J. Org. Chem. 2023; 88: 11874
- 32 Jakkampudi S, Sakkani N, Zhao JC.-G. Tetrahedron Lett. 2021; 76: 153229
- 33 Chen Z, Liu N.-W, Bolte M, Ren H, Manolikakes G. Green Chem. 2018; 20: 3059
- 34 Liu T, Zheng D, Li Z, Wu J. Adv. Synth. Catal. 2017; 359: 2653
- 35 Li Y, Zheng D, Li Z, Wu J. Org. Chem. Front. 2016; 3: 574
- 36 Huang J, Liu F, Zeng L.-H, Li S, Chen Z, Wu J. Nat. Commun. 2022; 13: 7081
- 37 Zhang C, Cheng H, An Y, Li S, Wu J, Zheng D. Org. Lett. 2024; 26: 8307
- 38 Chen S.-Y, Wang Y.-S, Han X, Zhang Z.-D, Li Z.-K, Lu D.-L, Li S. Org. Chem. Front. 2024; 11: 1169
- 39 Zhang L, Hu F, Shen L, Gao L, Yang Y, Pan Z, Xia C. Org. Lett. 2023; 25: 3168
- 40 Tomczyk I, Kalek M. Chem. Eur. J. 2024; 30: e202303916
- 41a Han Y, Jin Y, Jiang M, Yang H, Fu H. Org. Lett. 2019; 21: 1799
- 41b Xie X, Wang L, Zhou Q, Ma Y, Wang Z.-M, Li P. Chin. Chem. Lett. 2022; 33: 5069
- 42 CCDC 2395276 contains the supplementary crystallographic data for compound 3a. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
- 43 Zhang J, Wu J, Chang X, Xia J, Wu J. Org. Chem. Front. 2022; 9: 917
- 44 Qin B, Huang S, Chen J.-Q, Xiao W, Wu J. Org. Chem. Front. 2022; 9: 3521
- 45 4-(Arylsulfonyl)cyclohex-2,5-dien-1-ones 3a–w: General Procedure The appropriate phenol 1 (0.2 mmol), aryldiazonium salt 2 (0.4 mmol), and DABSO (72 mg, 0.3 mmol) were added to a 10 mL oven-dried reaction vial equipped with a magnetic stirrer bar. The reaction vessel was sealed with a rubber stopper, evacuated, and refilled three times with N2. DMF (2.0 mL) was then added from a syringe, and the resulting mixture was stirred at 40 °C for 12 h until the reaction was complete (TLC). The mixture was diluted with H2O (10 mL) and extracted with EtOAc (3 × 15 mL). The combined organic phase was concentrated, and the residue was purified by flash chromatography (silica gel, PE–EtOAc). 2,6-Di-tert-butyl-4-methyl-4-tosylcyclohexa-2,5-dien-1-one (3a) Prepared according to the general procedure and purified by flash column chromatography [silica gel, PE–EtOAc (15:1 to 10:1)] to give a white solid; yield: 63 mg (84%); mp 142–143 ℃; Rf = 0.4. 1H NMR (400 MHz, CDCl3): δ = 7.50 (d, J = 7.0 Hz, 2 H), 7.17 (d, J = 8.1 Hz, 2 H), 6.63 (s, 2 H), 2.35 (s, 3 H), 1.80 (s, 3 H), 1.09 (s, 18 H). 13C NMR (101 MHz, CDCl3): δ = 183.7, 151.2, 145.3, 135.7, 130.6, 130.3, 128.8, 65.8, 35.2, 29.0, 21.6, 18.5. HRMS (ESI, ion trap): m/z [M + H]+ calcd for C22H31O3S: 375.1989; found: 375.1988.