Subscribe to RSS
DOI: 10.1055/s-0043-1775407
Catalyst-Controlled Strategies to Override the Bond Dissociation Energy-Driven Selectivity of Benzylic C(sp3)–H Insertions
We wish to thank the French National Research Agency (program no. ANR-11-IDEX-0003-02, CHARMMMAT ANR-11-LABX-0039, and ANR-21-CE07-0016-01; fellowships to T.B. and E.D.S. C.), and the Ministère de l’Enseignement Supérieur et de la Recherche (fellowships to V.B. and E.B.). The computational work was performed using HPC resources from Grand Équipement National De Calcul Intensif (GENCI; 2021-A0110810977 and 2022-A0130810977).
Dedicated to John Hartwig on the occasion of his 60th birthday
Abstract
Catalytic C(sp3)–H insertion reactions of arylalkanes generally proceed at the benzylic position as a consequence of the lower bond dissociation energy (BDE) of the corresponding C–H bond. This account gives a brief overview of recent studies aimed at designing catalyst-controlled amination reactions to go beyond this BDE-driven selectivity. They permit the selective conversion of neutral C–H bonds with a BDE greater than 95 kcal mol–1 for the formation of alkylamines.
1 Introduction
2 Catalyst-Controlled Site-Selective C–H Insertion Reactions
3 Catalyst-Controlled Intermolecular Amination of Nonactivated C–H Bonds of Arylalkanes
4 Conclusion
Key words
rhodium catalysis - nitrene - amination - C–H functionalization - regioselectivity - C–N bond formationPublication History
Received: 31 July 2024
Accepted after revision: 10 September 2024
Article published online:
27 September 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Karimov RR, Hartwig JF. Angew. Chem. Int. Ed. 2018; 57: 4234
- 1b Wencel-Delord J, Glorius F. Nat. Chem. 2013; 5: 369
- 2a Newhouse T, Baran PS. Angew. Chem. Int. Ed. 2011; 50: 3362
- 2b Cernak T, Dykstra KD, Tyagarajan S, Vachal P, Krska SW. Chem. Soc. Rev. 2016; 45: 546
- 2c White MC, Zhao J. J. Am. Chem. Soc. 2018; 140: 13988
- 2d Castellino NJ, Montgomery AP, Danon JJ, Kassiou M. Chem. Rev. 2023; 123: 8127
- 3a Godula K, Sames D. Science 2006; 312: 67
- 3b Chu JC. K, Rovis T. Angew. Chem. Int. Ed. 2018; 57: 62
- 4 Rej S, Das A, Chatani N. Coord. Chem. Rev. 2021; 431: 213683
- 5a Doyle MP, Liu Y, Ratnikov M. Org. React. (Hoboken, NJ U. S.) 2013; 80: 1
- 5b Roizen JL, Harvey ME, Du Bois J. Acc. Chem. Res. 2012; 45: 911
- 5c Hazelard D, Nocquet P.-A, Compain P. Org. Chem. Front. 2017; 4: 2500
- 6 Hartwig JF, Larsen MA. ACS Cent. Sci. 2016; 2: 281
- 7 Fiori KW, Du Bois J. J. Am. Chem. Soc. 2007; 129: 562
- 8a Bess EN, DeLuca RJ, Tindall DJ, Oderinde MS, Roizen JL, Du Bois J, Sigman MS. J. Am. Chem. Soc. 2014; 136: 5783
- 8b Clark JR, Feng K, Sookezian A, White MC. Nat. Chem. 2018; 10: 583
- 9a Huang X, Bergsten TM, Groves JT. J. Am. Chem. Soc. 2015; 137: 5300
- 9b Suh S.-E, Chen S.-J, Mandal M, Guzei IA, Cramer CJ, Stahl SS. J. Am. Chem. Soc. 2020; 142: 11388
- 9c Lee J, Jin S, Kim D, Hong SH, Chang S. J. Am. Chem. Soc. 2021; 143: 5191
- 9d Bosnidou AE, Muñiz K. Angew. Chem. Int. Ed. 2019; 58: 7485
- 10a Roizen JL, Zalatan DN, Du Bois J. Angew. Chem. Int. Ed. 2013; 52: 11343
- 10b Chiappini ND, Mack JB. C, Du Bois J. Angew. Chem. Int. Ed. 2018; 57: 4956
- 11 Hartwig JF. Acc. Chem. Res. 2017; 50: 549
- 12 Taber DF, Ruckle RE. Jr. J. Am. Chem. Soc. 1986; 108: 7686
- 13 Gormisky PE, White MC. J. Am. Chem. Soc. 2013; 135: 14052
- 14 Bakhoda A, Jiang Q, Badiei YM, Bertke JA, Cundari TR, Warren TH. Angew. Chem. Int. Ed. 2019; 58: 3421
- 15 Gillespie JE, Fanourakis A, Phipps RJ. J. Am. Chem. Soc. 2022; 144: 18195
- 16 Breslow R, Winnik MA. J. Am. Chem. Soc. 1969; 91: 3083
- 17 Das S, Incarvito CD, Crabtree RH, Brudvig GW. Science 2006; 312: 1941
- 18 Olivo G, Farinelli G, Barbieri A, Lanzalunga O, Di Stefano S, Costas M. Angew. Chem. Int. Ed. 2017; 56: 16347
- 19 Burg F, Gicquel M, Breitenlechner S, Pöthig A, Bach T. Angew. Chem. Int. Ed. 2018; 57: 2953
- 20 Knezevic M, Heilmann M, Piccini GM, Tiefenbacher K. Angew. Chem. Int. Ed. 2020; 59: 12387
- 21 Davies HM. L, Liao K. Nat. Rev. Chem. 2019; 3: 347
- 22a Liu W, Ren Z, Bosse AT, Liao K, Goldstein EL, Bacsa J, Musaev DG, Stolz BM, Davies HM. L. J. Am. Chem. Soc. 2018; 140: 12247
- 22b Cammarota RC, Liu W, Bacsa J, Davies HM. L, Sigman MS. J. Am. Chem. Soc. 2022; 144: 1881
- 23 Buendia J, Grelier G, Dauban P. Adv. Organomet. Chem. 2015; 64: 77
- 24a DeAngelis A, Dmitrenko O, Yap GP. A, Fox J. J. Am. Chem. Soc. 2009; 131: 7230
- 24b Lindsay VN. G, Lin W, Charette AB. J. Am. Chem. Soc. 2009; 131: 16383
- 25 Boquet V, Nasrallah A, Dana AL, Brunard E, Di Chenna PH, Duran FJ, Retailleau P, Darses B, Sircoglou M, Dauban P. J. Am. Chem. Soc. 2022; 144: 17156
- 26 Brunard E, Boquet V, Van Elslande E, Saget T, Dauban P. J. Am. Chem. Soc. 2021; 143: 6407
- 27 Nishioka Y, Uchida T, Katsuki T. Angew. Chem. Int. Ed. 2013; 52: 1739
- 28 Chen K, Eschenmoser A, Baran PS. Angew. Chem. Int. Ed. 2009; 48: 9705
- 29 The hyperconjugative effects include the orbital overlap of the C–C σ-bonding orbital with the C–H σ-antibonding orbital, which is enabled by their trans-antiperiplanar arrangement. This makes the equatorial C–H bond more nucleophilic.
- 30 Nasrallah A, Boquet V, Hecker A, Retailleau P, Darses B, Dauban P. Angew. Chem. Int. Ed. 2019; 58: 8192
- 31b Su X.-X, Chen X.-H, Ding D.-B, She Y.-B, Yang Y.-F. Molecules 2023; 28: 1928
- 32 For a spectacular achievement, see: Liao K, Negretti S, Musaev DG, Bacsa J, Davies HM. L. Nature 2016; 533: 230
- 33 Brunard E, Boquet V, Saget T, Sosa Carrizo ED, Sircoglou M, Dauban P. J. Am. Chem. Soc. 2024; 146: 5843
- 34 Li Z, Quan RW, Jacobsen EN. J. Am. Chem. Soc. 1995; 117: 5889
- 35 For a recent example, see: Wu K, Zhang X, Wu L.-L, Huang J.-S, Che C.-M. Angew. Chem. Int. Ed. 2023; 62: e202215891
The same trend is observed for other intermolecular C(sp3)–H amination reactions; see, for example:
Sosa Carrizo, E. D.; Sircoglou, M.; Dauban, P. 2024, unpublished results. See also: