Subscribe to RSS
DOI: 10.1055/s-2003-41013
Efficient Regioselective Preparationof Monobromo and Bromoiodo Hydroxy Pyridines from Dibromoderivativesvia Bromine-Lithium Exchange
Publication History
Publication Date:
11 August 2003 (online)
Abstract
Annular dibromination of hydroxypyridines with NBS in acetonitrilefollowed by bromine-lithium exchange with RLi and subsequent trappingwith H2O or I2 afforded monobromo and bromoiododerivatives in a completely regioselective way. Iodination of bromohydroxypyridines with NIS is totally regioselective.
Key words
hydroxypyridines - bromine-lithium exchange - N-bromosuccinimide - N-iodosuccinimide - bromoiodopyridines
-
1a
Sharples CGV.Karig G.Simpson GL.Spencer JA.Wright E.Millar NS.Wonnacott S.Gallagher T. J. Med. Chem. 2002, 45: 3235 -
1b
Enyedy IJ.Sakamury S.Zaman WA.Johnson KM.Wang SM. Bioorg. Med. Chem. Lett. 2003, 13: 513 -
1c
Raulee I.Sivakumar R.Muruganantham N.Anbalagan N.Gunasekaran V.Leonard JT. Chem. Pharm. Bull. 2003, 51: 162 -
1d For agrochemical compoundssee:
Yano T.Okano N.Ugai S.Hori M.Hirai K. J. Pesticide Sci. 2001, 26: 67 -
1e Also see:
Fhu JB.Wang MG.Wu WJ.Ji ZQ.Hu ZN. Phytochemistry 2002, 61: 699 -
2a
Kaes C.Katz A.Hosseini MW. Chem. Rev. 2000, 100: 3553 -
2b
Heller M.Shubert US. J. Org. Chem. 2002, 67: 8269 -
2c
Bera JK.Dunbar KR. Angew.Chem. Int. Ed. 2002, 41: 4453 -
3a
Le Bozec H.Renouard T. Eur.J. Inorg. Chem. 2000, 2: 229 -
3b
Skaff H.Emrick T. Chem. Commun. 2003, 52 -
3c
Tessore F.Roberto D.Ugo R.Mussini P.Quici S.Ledoux-Rak J.Zyss J. Angew. Chem.Int. Ed. 2003, 42: 456 -
4a
O’Regan B.Grätzel M. Nature (London) 1991, 353: 737 -
4b
Vitale M.Ford PC. Coord. Chem. Rev. 2001, 219: 3 -
4c
Muramatsu Y.Yamamoto T.Hayakawa T.Koinuma H. Appl. Surf. Sci. 2002, 189: 319 -
5a
Constable EC. In Progress in Inorganic Chemistry Vol.42:Karlin KD. Wiley; NewYork: 1994. p.67 -
5b
Hanan G.Schubert U.Volkmer D.Riviere E.Lehn J.-M.Kyritaska N.Fischer J. Can.J. Chem. 1997, 75: 169 - Some reviews:
-
6a
Mongin F.Quéguiner G. Tetrahedron 2001, 57: 4059 -
6b
Gros P.Fort Y. Eur. J. Org. Chem. 2002, 3375 -
6c
Karig G.Thasana N.Gallagher T. Synlett 2002, 808 -
6d
Lazaar J.Rebstock A.Mongin F.Godard A.Trécourt F.Marsais F.Quéguiner G. Tetrahedron 2002, 58: 6723 - For RLi see:
-
7a
Gilman H.Spatz SM. J. Org. Chem. 1951, 16: 1485 -
7b
Cai D.Hughes DL.Verhoeven TR. Tetrahedron Lett. 1996, 37: 2537 -
7c
Peterson MA.Mitchell JR. J.Org. Chem. 1997, 62: 8237 -
7d
Cai D.Larsen RD.Reider PJ. Tetrahedron Lett. 2002, 43: 4285 -
7e
Bouillon A.Lancelot J.-C.Collot V.Bovy PR.Rault S. Tetrahedron 2002, 58: 2885 -
7f
Bouillon A.Lancelot J.-C.Collot V.Bovy PR.Rault S. Tetrahedron 2002, 58: 3323 -
7g
Bouillon A.Lancelot J.-C.Collot V.Bovy PR.Rault S. Tetrahedron 2002, 58: 4369 - For RMgX see:
-
8a
Bérillon L.Leprête A.Turck A.Plé N.Quéguiner G.Cahiez G.Knochel P. Synlett 1998, 1359 -
8b
Trécourt F.Breton G.Bonnet V.Mongin F.Marsais F.Quéguiner G. Tetrahedron 2000, 56: 1349 -
8c
Cai W.Ripin DH. Synlett 2002, 273 -
8d
Kato S.Nonoyama N.Tomimoto K.Mase T. Tetrahedron Lett. 2002, 7315 -
8e
Schlosser M.Cottet F. Eur. J. Org. Chem. 2002, 4181 -
9a
Skerlj RT.Bogucki D.Bridger GJ. Synlett 2000, 1488 -
9b
Cherng Y.-J. Tetrahedron 2002, 58: 4931 - For bromopyridines see:
-
10a
Bonnet V.Mongin F.Trécourt F.Quéguiner G.Knochel P. TetrahedronLett. 2001, 42: 5717 -
10b
Iglesias B.Alvárez R.Lera AR. Tetrahedron 2001, 57: 3125 -
10c
Alami M.Peyrat J.-F.Belachmi L.Brion J.-D. Eur. J. Org. Chem. 2001, 4270 -
10d
Zhang N.Thomas L.Wu B. J.Org. Chem. 2001, 66: 1500 -
10e
Morris GA.Nguyen ST. TetrahedronLett. 2001, 42: 2093 -
10f
Bonnaite SC.Carpentier J.-F.Mortreux A.Castanet Y. TetrahedronLett. 2001, 42: 3689 -
10g
Bonnet V.Mongin F.Trécourt F.Quéguiner G.Knochel P. Tetrahedron 2002, 58: 4429 -
10h For iodopyridines see:
Mello JV.Finney NS. Org. Lett. 2001, 3: 4263 -
10i See also:
Phuan P.-W.Kozlowski MC. TetrahedronLett. 2001, 42: 3963 -
10j See also:
Yue WS.Li JK. Org.Lett. 2002, 4: 2201 - 11
Schanatterer S.Koch V. Synthesis 1990, 497 -
12a
Carreño MC.GarcíaRuano JL.Sanz G.Toledo MA.Urbano A. J.Org. Chem. 1995, 60: 5328 -
12b
Carreño MC.García Ruano JL.Sanz G.Toledo MA.Urbano A. Tetrahedron.Lett. 1996, 37: 4081 -
12c
Carreño MC.García Ruano JL.Sanz G.Toledo MA.Urbano A. Synlett 1997, 1241 - 13
Cañibano V.Rodríguez JF.Santos M.Sanz-Tejedor MA.Carreño MC.González G.García-Ruano JL. Synthesis 2001, 2175 - 16
Mongin F.Fourquez J.-M.Rault S.Levacher V.Godard A.Trécourt F.Quéguiner G. Tetrahedron Lett. 1995, 36: 8415 - 18 For preference for ring lithiationover deprotonation see:
Carpentier TA.Jenner PJ.Leeper FJ.Staunton J. J. Chem.Soc., Chem. Commun. 1980, 1227 -
19a
Bargar TM.Wilson T.Daniel JK. J. Heterocycl. Chem. 1985, 22: 1583 -
19b
Tee OS.Paventi M. J. Am. Chem.Soc. 1982, 104: 4142
References
Unpublished results. Bromination ofmethyl hydroxy-pyridines 3-6 were carried out with 1 equivalent ofNBS in acetonitrile. For 3, 3-bromo-, 5-bromo-and 3,5-dibromo 2-hydroxy-6-methyl pyridines were formed in a 28:54:9ratio. For 4, 3-bromo-, 5-bromo- and 3,5-dibromo2-hydroxy-4-methyl pyridines were formed in a 36:44:8 ratio. For 5, 6-bromo- and 4,6-dibromo 3-hydroxy-2-methylpyridines were formed in a 20:40 ratio. For 6 2-bromo-and 2,4-dibromo 3-hydroxy-6-methyl pyridines were formed in a 23:38ratio. The rest up to 100% were unaltered starting material.
15Dibromopyridines 9-12 were characterized on the basis of their 1HNMR (δ in ppm, DMSO-d
6,300 MHz) and 13C NMR (δ inppm, DMSO-d
6, 75 MHz) spectroscopicdata and elemental analysis.
Compound 9:white solid; mp 223-224 °C (Et2O/hexane); 1HNMR: 2.23 (s, 3 H, CH3), 8.04 (s, 1 H, H-C4), 12.50 (br s,1 H, OH); 13C NMR: 19.2 (CH3),97.0 (C-5), 112.3 (C-3), 144.8 (C-4), 145.7 (C-6), 158.3 (C-2);Anal. Calcd for C6H5NOBr2: C, 27.00;H, 1.89; N, 5.25. Found: C, 27.44; H, 1.98; N, 5.29.
Compound 10: white solid; mp 222-223 °C(methanol); 1H NMR: 2.41 (s, 3 H, CH3),7.76 (s, 1 H, H-C6), 12.29 (br s, 1 H, OH); 13CNMR: 24.1 (CH3), 100.5 (C-5), 116.7 (C-3), 135.0 (C-6),149.3 (C-4), 157.7 (C-2); Anal. Calcd. for C6H5NOBr2:C, 27.00; H, 1.89; N, 5.25. Found: C, 27.08; H, 1.95; N, 5.37.
Compound 11: yellow solid; mp 107-108 °C(Et2O/hexane); 1H NMR: 2.39(s, 3 H, CH
3), 7.68 (s, 1H, H-C5), 9.98 (br s, 1 H, OH); 13CNMR: 19.9 (CH3), 122.4 (C-4), 128.4 (C-5), 128.6 (C-6),148.8 and 149.1 (C-2 and C-3); Anal. Calcd for C6H5NOBr2:C, 27.00; H, 1.89; N, 5.25. Found: C, 27.24; H, 2.02; N, 5.34.
Compound 12: yellow solid; mp 100-101°C(Et2O/hexane); 1H NMR (DMSO-d
6): 2.33 (s, 3 H, CH3),7.52 (s, 1 H, H-C5), 10.30 (br s, 1 H, OH); 13CNMR (DMSO-d
6): 22.2 (CH3),121.9 (C-4), 127.2 (C-5), 131.3 (C-2), 146.3 (C-6), 150.6 (C-3).Anal. Calcd for C6H5NOBr2: C, 27.00;H, 1.89; N, 5.25. Found: C, 27.44; H, 2.03; N, 5.34.
Compounds 13 and 14 had been previously reported.
[13]
Monobromo hydroxypyridines 15-18 werecharacterized on the basis of their 1H NMR (δ inppm, 300 MHz) and 13C NMR (δ inppm, 75 MHz) spectroscopic data and elemental analysis.
Compound 15: white solid; mp 220-221 °C(Et2O/hexane); 1H NMR (CDCl3):2.38 (s, 3 H, CH3), 6.00 (d, 1 H, J
5,4 = 7.5 Hz,H-C5), 7.72 (d, 1 H, J
4,5 = 7.5Hz, H-C4), 13.24 (br s, 1 H, OH); 13CNMR (CDCl3): 18.9 (CH3), 106.7 (C-5), 111.2 (C-3),143.7 (C-4), 145.8 (C-6), 161.7 (C-2); Anal. Calcd for C6H6NOBr:C, 38.32; H, 3.22; N, 7.45. Found: C, 38.52; H, 3.18; N, 7.45.
Compound 16: white solid; mp 195-196 °C(acetone); 1H NMR (DMSO-d
6):2.25 (s, 3 H, CH
3), 6.19 (d,1 H, J
5,6 = 6.5 Hz,H-C5), 7.32 (d, 1 H, J
6,5 = 6.5Hz, H-C6), 11.90 (br s, 1 H, OH); 13CNMR (DMSO-d
6): 23.1 (CH3),107.9 (C-5), 116.0 (C-3), 133.0 (C-6), 151.1 (C-4), 158.4 (C-2);Anal. Calcd for C6H6NOBr: C, 38.32; H, 3.22;N, 7.45. Found: C, 38.37; H, 3.22; N, 7.54.
Compound 17: white solid; mp 199-200 °C(Et2O/hexane); 1H NMR (CDCl3):2.42 (s, 3 H, CH
3), 7.00 (d,1 H, J
4,5 = 8.4 Hz,H-C4), 7.09 (d, 1 H, J
5,4 = 8.4Hz, H-C5), 9.01 (br s, 1 H, OH); 13CNMR (CDCl3): 18.7 (CH3), 124.8 and 125.7 (C-4and C-5), 128.0 (C-6), 147.5 (C-2), 151.4 (C-3). HRMS (EI) calcdfor C6H6NOBr: 186.9632. Found 186.9629.
Compound 18: white solid; 1HNMR (DMSO-d
6): 2.31 (s, 3 H,CH3), 7.05 (d, 1 H, J
4,5 = 8.1Hz, H-C4), 7.15 (d, 1 H, J
5,4 = 8.1Hz, H-C5); 13C NMR (DMSO-d
6): 22.4 (CH3), 123.3and 123.9 (C-5 and C-4), 129.0 (C-2), 148,6 and 148.7 (C-6 and C-3).
Bromoiodo derivatives 21-26 were characterized on the basis of their 1HNMR (δ in ppm, 300 MHz) and 13CNMR (δ in ppm, 75 MHz) spectroscopic data and elemental analysis.
Compound 21: yellow solid; mp 205-206 °C(acetone/methanol); 1H NMR (CDCl3):2.52 (s, 3 H, CH
3), 8.03 (s, 1H,H-C4), 13.47 (br s, 1 H, OH); 13C NMR(CDCl3): 23.9 (CH3), 68.9 (C-5), 112.4 (C-3),147.4 (C-6), 151.2 (C-4), 161.3 (C-2). HRMS (EI) calcd. for C6H5NOBrI:312.8599. Found: 312.8599.
Compound 22:yellow solid; mp 115-116 °C(acetone); 1H NMR(DMSO-d
6): 2.38 (s, 3 H, CH3),7.78 (s, 1 H, H-C5), 9.85 (br s, 1 H, OH); 13CNMR (DMSO-d
6): 20.1 (CH3), 100.9(C-4), 129.2 (C-6), 134.1 (C-5), 147.2 (C-2), 151.5 (C-3). HRMS(EI) calcd for C6H5NOBrI: 312.8599. Found: 312.8603.
Compound 23: yellow solid; 1HNMR (DMSO-d
6): 8.24 (d, 1H, J
2,6 = 0.9 Hz,H-C2), 8.29 (d, 1 H, J
2,6 = 0.9Hz, H-C6); 13C NMR (DMSO-d
6): 89.5 (C-5), 109.3 (C-3),138.7 (C-2), 143.1 (C-6), 169.2 (C-4). HRMS (EI) calcd for C5H3NOBrI: 298.8442.Found 298.8434.
Compound 24: yellowsolid; mp 243-244 °C (acetone); 1H NMR(DMSO-d
6): 7.71 (d, 1 H, J
4,6 = 1.7 Hz, H-C4),8.08 (d, 1 H, J
4,6 = 1.7Hz, H-C6), 12.29 (br s, 1 H, OH); 13CNMR (DMSO-d
6): 64.3 (C-5),116.4 (C-3), 140.7 (C-4), 148.8 (C-6), 157.5 (C-2). Anal Calcd.for C5H3NOBrI: C, 20.02; H, 1.01; N, 4.67.Found: C, 19.93; H, 1.02; N, 4.55.
Compound 25:yellow solid; mp 226-227 °C(acetone); 1H NMR(DMSO-d
6): 7.74 (d, 1 H, J
4,6 = 2.4 Hz, H-C4),8.21 (d, 1 H, J
4,6 = 2.4Hz, H-C6), 12.23 (br s, 1 H, OH); 13CNMR (DMSO-d
6): 93.8 (C-5),97.2 (C-3), 136.8 (C-4), 150.8 (C-6), 159.0 (C-2). Anal Calcd. forC5H3NOBrI: C, 20.02; H, 1.01; N, 4.67. Found:C, 19.90; H, 0.96; N, 4.57.
Compound 26:yellow solid; mp 218-220 °C (acetone/methanol); 1HNMR (DMSO-d
6): 2.45 (s, 3H, CH3), 7.78 (s, 1 H, H-C6), 12.17 (br s, 1 H, OH); 13CNMR (DMSO-d
6): 29.1 (CH3),72.3 (C-5), 116.1 (C-3), 139.7 (C-6), 151.4 (C-4), 157.9 (C-2).HRMS (EI) calcd for C6H5NOBrI: 312.8599. Found:312.8592.