Subscribe to RSS
DOI: 10.1055/s-2004-817754
Transmission of Axial Chirality to Spiro Center Chirality, Enabling Enantiospecific Access to Erythrinan Alkaloids
Publication History
Publication Date:
10 February 2004 (online)
Abstract
Synthesis of O-methylerysodienone in enantiomerically pure form is described, where the axial chirality of the intermediate biphenyl is stereospecifically transmitted to the spiro center chirality of the erythrinan skeleton.
Key words
erythrinan alkaloid - biphenyl compound - axial chirality - spiro center chirality
-
1a
Dyke SF.Quessy SN. In The Alkaloids Vol. 18:Rodrigo RGA. Academic Press; New York: 1981. p.1 -
1b
Tsuda Y.Sano T. In The Alkaloids Vol. 48:Cordell GA. Academic Press; San Diego: 1996. p.249 - For recent synthetic studies, see:
-
2a
Fukumoto H.Esumi T.Ishihara J.Hatakeyama S. Tetrahedron Lett. 2003, 44: 8047 -
2b
Shimizu K.Takimoto M.Mori M. Org. Lett. 2003, 5: 2323 -
2c
Gill C.Greenhalgh DA.Simpkins NS. Tetrahedron Lett. 2003, 44: 7803 -
2d
Chikaoka S.Toyao A.Ogasawara M.Tamura O.Ishibashi H. J. Org. Chem. 2003, 68: 312 -
2e
Miranda LD.Zard SZ. Org. Lett. 2002, 4: 1135 -
2f
Allin SM.James SL.Elsegood MRJ.Martin WP. J. Org. Chem. 2002, 67: 9464 -
2g
Padwa A.Waterson AG. J. Org. Chem. 2000, 65: 235 -
2h
Hosoi S.Nagao M.Tsuda Y.Isobe K.Sano T.Ohta T. J. Chem. Soc., Perkin Trans. 1 2000, 1505 -
2i For asymmetric synthesis of erythrinan alkaloid, see:
Sano T.Kamiko M.Toda J.Hosoi S.Tsuda Y. Chem. Pharm. Bull. 1994, 42: 1375 -
2j
Tsuda Y.Hosoi S.Isida K.Sangai M. Chem. Pharm. Bull. 1994, 42: 204 -
2k
Tsuda Y.Hosoi S.Katagiri N.Kaneko C.Sano T. Chem. Pharm. Bull. 1993, 41: 2087 - 3 Throughout this work, the commonly accepted erythrinan numbering is used. See:
Boekelheide V.Prelog V. In Progress in Organic Chemistry Vol. 3:Cook JW. Butterworths Scientific; London: 1955. Chap. 5. see also ref. 1 - 4
Yasui Y.Koga Y.Suzuki K.Matsumoto T. Synlett 2004, DOI: 10.1055/s-2004-817753 - For reviews, see:
-
5a
Bringmann G.Breuning M.Tasler S. Synthesis 1999, 525 -
5b
Gant TG.Meyers AI. Tetrahedron 1994, 50: 2297 -
5c For recent examples, see:
Broutin P.-E.Colobert F. Org. Lett. 2003, 5: 3281 -
5d
Baudoin O.Décor A.Cesario M.Guéritte F. Synlett 2003, 2009 -
5e See also:
Anderson JC.Cran JW.King NP. Tetrahedron Lett. 2003, 44: 7771 -
5f
Kamikawa K.Sakamoto T.Tanaka Y.Uemura M. J. Org. Chem. 2003, 68: 9356 -
5g
Matsumoto T.Konegawa T.Nakamura T.Suzuki K. Synlett 2002, 122 -
5h
Shimada T.Cho Y.-H.Hayashi T. J. Am. Chem. Soc. 2002, 124: 13396 -
7a
Miyaura N.Yanagi T.Suzuki A. Synth. Commun. 1981, 11: 513 -
7b
Watanabe T.Miyaura N.Suzuki A. Synlett 1992, 207 -
7c For a review, see:
Miyaura N.Suzuki A. Chem. Rev. 1995, 95: 2457 -
10a
Tamura Y.Yakura T.Haruta J.Kita Y. J. Org. Chem. 1987, 52: 3927 -
10b
Lewis N.Wallbank P. Synthesis 1987, 1103 -
10c For reviews on phenolic oxidation with hypervalent iodine reagents, see:
Pelter A.Ward RS. Tetrahedron 2001, 57: 273 -
10d
Moriarty RM.Prakash O. Org. React. 2001, 57: 327 -
10e For a review on synthetic uses of ortho-quinone monoacetals, see:
Quideau S.Pouységu L. Org. Prep. Proced. Int. 1999, 31: 617 -
13a
Ghosal S.Majumdar SK.Chakraborti A. Aust.
J. Chem. 1971, 24: 2733 -
13b
Chou C.-T.Swenton JS.
J. Am. Chem. Soc. 1987, 109: 6898
References
All new compounds were fully characterized by 1H and 13C NMR, IR and combustion analysis. Data for the selected compounds follow. [*The specific rotation is shown for (+)-6 and for each isomer derived from (+)-6. See ref. 9 and ref. 14] Compound 6: [α]D 28 +20.5 (c 1.12, CHCl3)*. 1H NMR (CDCl3): δ = 7.46-7.36 (m, 5 H), 6.97 (s, 1 H), 6.86 (s, 1 H), 6.54 (s, 1 H), 6.01 (s, 1 H), 5.15 (s, 2 H), 3.93 (s, 3 H), 3.82 (s, 3 H), 3.73-3.55 (m, 4 H), 2.60-2.45 (m, 4 H), 1.35 (br, 1 H), 0.97 (s, 21 H). 13C NMR (CDCl3): δ = 148.4, 147.3, 145.2, 141.8, 135.9, 134.2, 131.8, 130.0, 128.8, 128.5, 128.4, 127.9, 113.5, 113.2, 112.4, 111.5, 71.4, 63.8, 62.6, 55.8, 55.7, 37.6, 36.2, 17.9, 11.8. IR (NaCl): 3515, 2940, 2865, 1605, 1515, 1490, 1465, 1255, 1215, 1165, 1110, 1045, 755 cm-1. Anal. Calcd for C34H47BrO6Si: C, 61.90; H, 7.18. Found: C, 61.98; H, 7.45. HPLC (Daicel CHIRAL-PAK AD-H, φ0.46 × 250 mm × 2, hexane:i-PrOH = 85:15, 1.0 mL/min) retention time: 10.9 min for (+)-6, 12.8 min for (-)-6. Compound 9: Colorless needles (hexane), mp 194.0-194.5 °C; [α]D 24 +16 (c 1.1, CHCl3)*. 1H NMR (CDCl3): δ = 6.95 (s, 1 H), 6.78 (s, 1 H), 6.55 (s, 1 H), 5.48 (s, 1 H), 4.45 (s, 1 H), 3.92 (s, 3 H), 3.82 (s, 3 H), 3.81 (s, 3 H), 3.60 (t, 2 H, J = 6.8 Hz), 3.30-3.18 (m, 2 H), 2.50-2.39 (m, 3 H), 2.34 (ddd, 1 H, J 1 = J 2 = 6.8 Hz, J 3 = 13.2 Hz), 1.42 (s, 9 H), 0.95 (s, 21 H), -0.1 (s, 9 H). 13C NMR (CDCl3): δ = 155.8, 151.1, 148.2, 147.1, 146.6, 138.5, 134.1, 133.5, 132.0, 129.5, 119.1, 114.3, 111.4, 79.2, 64.1, 61.3, 55.9, 55.7, 40.1, 36.9, 33.1, 28.4, 17.9, 11.9, 1.7. IR (KBr): 3325, 2940, 2865, 1685, 1515, 1465, 1245, 1170, 1110, 880 cm-1. Anal. Calcd for C36H61NO7Si2: C, 63.96; H, 9.09; N, 2.07. Found: C, 64.26; H, 9.38; N, 2.06. HPLC (Daicel CHIRALCEL OD-H, φ0.46 × 250 mm × 2, hexane:i-PrOH = 98:2, 1.0 mL/min) retention time: 20.5 min for (+)-9, 25.6 min for (-)-9. Compound 10: [α]D 24 -24 (c 0.99, CHCl3)*. 1H NMR (CDCl3): δ = 6.81 (s, 1 H), 6.61 (s, 1 H), 6.10 (s, 1 H), 4.59 (br, 1 H), 3.92 (s, 3 H), 3.85 (s, 3 H), 3.72-3.61 (m, 2 H), 3.42-3.33 (m, 2 H), 3.35 (s, 3 H), 3.24 (s, 3 H), 2.61 (t, 2 H, J = 7.7 Hz), 2.16 (ddd, 1 H, J 1 = J 2 = 7.2 Hz, J 3 = 14.5 Hz), 2.03 (ddd, 1 H, J 1 = J 2 = 5.6 Hz, J 3 = 14.5 Hz), 1.43 (s, 9 H), 0.99 (s, 21 H), -0.11 (s, 9 H). 13C NMR (CDCl3): δ = 196.7, 155.7, 153.9, 153.2, 148.8, 148.3, 146.8, 130.1, 129.3, 125.2, 113.3, 111.3, 94.5, 79.3, 61.3, 55.9, 55.8, 50.3, 50.2, 39.8, 37.4, 33.2, 28.3, 17.9, 11.8, 1.6. IR (NaCl): 3385, 2945, 2865, 1715, 1665, 1510, 1465, 1250, 1165, 1090, 1070 cm-1. Anal. Calcd for C37H63NO8Si2: C, 62.94; H, 8.99; N, 1.98. Found: C, 62.65; H, 9.18; N, 1.94. HPLC (Daicel CHIRALCEL OD-H, φ0.46 × 250 mm, hexane:i-PrOH = 98:2, 1.0 mL/min) retention time: 7.4 min for (-)-10, 12.6 min for (+)-10. Compound 11: [α]D 27 +52.0 (c 1.73, CHCl3)*. 1H NMR (CDCl3): δ = 6.56 (s, 1 H), 6.49 (s, 1 H), 6.05 (s, 1 H), 4.15 (ddd, 1 H, J 1 = J 2 = 5.1 Hz, J 3 = 13.2 Hz), 3.85 (s, 6 H), 3.76 (ddd, 1 H, J 1 = 5.1 Hz, J 2 = 8.9 Hz, J 3 = 13.2 Hz), 3.66 (s, 3 H), 3.63 (ddd, 1 H, J 1 = 6.2 Hz, J 2 = 8.1 Hz, J 3 = 9.7 Hz), 3.49 (ddd, 1 H, J 1 = 6.2 Hz, J 2 = 8.1 Hz, J 3 = 9.7 Hz), 3.03 (ddd, 1 H, J 1 = 5.1 Hz, J 2 = 8.9 Hz, J 3 = 16.1 Hz), 2.93 (ddd, 1 H, J 1 = J 2 = 5.1 Hz, J 3 = 16.1 Hz), 2.31 (ddd, 1 H, J 1 = J 2 = 6.2 Hz, J 3 = 12.3 Hz), 2.11 (ddd, 1 H, J 1 = J 2 = 8.1 Hz, J 3 = 12.3 Hz), 1.37 (s, 9 H), 0.94 (s, 21 H), 0.0 (s, 9 H). 13C NMR (CDCl3): δ = 181.6, 167.4, 157.1, 154.9, 148.7, 148.5, 147.7, 126.3, 124.3, 123.5, 111.0, 109.8, 81.1, 66.3, 61.3, 59.8, 55.8, 55.7, 40.1, 34.7, 28.3, 27.9, 17.9, 11.7, 1.4. IR (NaCl): 2940, 2865, 1695, 1660, 1515, 1365, 1260, 1225, 1165, 1090, 860 cm-1. Anal. Calcd for C36H59NO7Si2: C, 64.15; H, 8.82; N, 2.08. Found: C, 64.01; H, 9.02; N, 1.93. HPLC (Daicel CHIRAL-CEL OD-H, φ0.46 × 250 mm, hexane:i-PrOH = 99:1, 0.5 mL/min) retention time: 14.3 min for (+)-11, 17.1 min for (-)-11. Compound 1: Pale yellow needles (CHCl3), mp 90.5-91.0 °C; [α]D 24 +46 (c 0.86, CHCl3)*. HPLC (Daicel CHIRALPAK AD-H, φ0.46 × 250 mm, hexane:i-PrOH = 80:20, 1.0 mL/min) retention time: 31.6 min for (+)-1, 25.3 min for (-)-1.
8Attempts to remove the MOM group from alcohol 4 led to concomitant desilylation.
9We converted both isomers of 6 to O-methyleryso-dienone(1). The absolute configuration of each intermediate was not determined. In Scheme [2] and Scheme [3] , one of the enantiomers was tentatively drawn for convenience.
11The enantiomeric purity was determined by HPLC analysis. For the analytical conditions and retention times, see ref. 6.
12We were afraid of racemization in the oxidation of 9 and in the cyclization of 10. If the reaction process involved dienone i as a transient intermediate, generated by the intermolecular attack of a nucleophile at the C(5), the change in the C(5) hybridization into sp3 might have caused racemization due to the lowered rotational barrier about the C(5)-C(13) bond (Figure [2] ).
14The specific rotation of O-methylerysodienone has not been reported.