References
For reviews involving the generation and application of α-lithioamines, see:
1a
Gant TG.
Meyers AI.
Tetrahedron
1994,
50:
2297
1b
Beak P.
Basu A.
Gallagher DJ.
Park YS.
Thayumanavan S.
Acc. Chem. Res.
1996,
29:
552
1c
Gawley RE.
Curr. Org. Chem.
1997,
1:
71
1d
Kessar SV.
Singh P.
Chem. Rev.
1997,
97:
721
1e
Katritzky A.
Qi M.
Tetrahedron
1998,
54:
2647
1f
Husson HP.
Royer J.
Chem. Soc. Rev.
1999,
28:
383
1g
Rassu G.
Zanardi F.
Battistini L.
Casiraghi G.
Chem. Soc. Rev.
2000,
29:
109
For representative approaches to optically active α-lithiopyrrolidines and α-lithiopiperidines, see:
2a
Meyers AI.
Dickman DA.
Bailey TR.
J. Am. Chem. Soc.
1985,
107:
7974
2b
Huang P.-Q.
Arseniyadis S.
Husson H.-P.
Tetrahedron Lett.
1987,
28:
547
2c
Gawley RE.
Hart GC.
Bartolotti LJ.
J. Org. Chem.
1989,
54:
175
2d
Pearson WH.
Lindbeck AC.
Kampf JW.
J. Am. Chem. Soc.
1993,
115:
2622
2e
Wu S.
Lee S.
Beak P.
J. Am. Chem. Soc.
1996,
118:
715
2f
Coldham I.
Hufton R.
Snowden D.
J. Am. Chem. Soc.
1996,
118:
5322
2g
Dearden MJ.
Firkin CR.
Hermet J.-PR.
O’Brien P.
J. Am. Chem. Soc.
2002,
124:
11870
2h
Wiberg KB.
Bailey WF.
Angew. Chem. Int. Ed.
2000,
39:
2127
2i
Watson RT.
Gore VK.
Chandupatla KR.
Dieter RK.
Snyder JP.
J. Org. Chem.
2004,
69:
6105
3 For a racemic synthetic equivalent to synthon 2 (X = O), see: Thompson SHJ.
Subramanian RS.
Roberts JK.
Hadley MS.
J. Chem. Soc., Chem. Commun.
1994,
933
For chiral non-racemic synthetic equivalents to synthon 2 (X = O), see:
4a
Huang P.-Q.
Wu T.-J.
Ruan Y.-P.
Org. Lett.
2003,
5:
4341
4b
Huang P.-Q.
Deng J.
Synlett
2004,
247
5
Beak P.
Lee WK.
J. Org. Chem.
1993,
58:
1109
6a
Sunose M.
Peakman TM.
Charmant JPH.
Gallagher T.
Macdonald SJF.
Chem. Commun.
1998,
1723
6b
Pandey G.
Chakrabarti D.
Tetrahedron Lett.
1998,
39:
8371 ; and references cited therein
For approaches to optically active 2-substituted 3-aminopyrrolidines, see:
7a
Iwanami S.
Takashima M.
Hirata Y.
Hasegawa O.
Usuda S.
J. Med. Chem.
1981,
24:
1224
7b
Drugs Future
1991,
16:
95
7c
Andres CJ.
Lee PH.
Nguyen TH.
Meyers AI.
J. Org. Chem.
1995,
60:
3189
7d
Huang P.-Q.
Wang SL.
Ye JL.
Ruan YP.
Huang YQ.
Zheng H.
Gao J.
Tetrahedron
1998,
54:
12547
7e
Borthwick AD.
Crame AJ.
Davies DE.
Exall AM.
Jackson DL.
Mason AM.
Pennell AMK.
Weingarten GG.
Synlett
2000,
504
7f
Cooke JWB.
Berry MB.
Caine DM.
Cardwell KS.
Cook JS.
Hodgson A.
J. Org. Chem.
2001,
66:
334
7g
Andrews DM.
Carey SJ.
Chaignot H.
Coomber BA.
Gray NM.
Hind SL.
Jones PS.
Mills G.
Robinson JE.
Slater MJ.
Org. Lett.
2002,
4:
4475
For approaches to racemic 2-substituted 3-aminopyrrolidines, see:
8a
MacDonald SJF.
Clarke GDE.
Dowle MD.
Harrison LA.
Hodgson ST.
Inglis GGA.
Johnson MR.
Shah P.
Upton RJ.
Walls SB.
J. Org. Chem.
1999,
64:
5166
8b
Norton Matos MRP.
Afonso CAM.
Batey RA.
Tetrahedron Lett.
2001,
42:
7007
8c
Suero R.
Gorgojo JM.
Aurrecoechea M.
Tetrahedron
2002,
58:
6211
9
Flynn DL.
Zabrowski DL.
Becker DP.
Nosal R.
Villamil CI.
Gullickson GW.
Moummi C.
Yang D.-C.
J. Med. Chem.
1992,
35:
1489
10a For a recent asymmetric synthesis of 1-aminopyrrolizidine, see: Giri N.
Petrini M.
Profeta R.
J. Org. Chem.
2004,
69:
7303
10b For an approach to optically active 1-aminopyrrolizidin-3-one derivative, see: Langlois N.
Radom M.-O.
Tetrahedron Lett.
1998,
39:
857
For approaches to racemic 1-aminopyrrolizidines, see:
11a
Suri KA.
Suri OP.
Sawhney RS.
Gupta OP.
Atal CK.
Indian J. Chem., Sect. B
1977,
15:
972
11b
Suri KA.
Suri OP.
Atal CK.
Indian J. Chem., Sect. B
1983,
22:
822
11c
Zabrowski DL.
Becker DP.
Nosal R.
Villamil CI.
Gullikson GW.
Moummi C.
Yang D.-C.
J. Med. Chem.
1992,
35:
1486
11d Ref.
[13]
12
Ikhiri K.
Ahond A.
Poupat C.
Potier P.
Pusset J.
Sévenet T.
J. Nat. Prod.
1987,
50:
626
13 For preparation of both enantiomers of absouline by racemic synthesis followed by chiral HPLC separation, see: Christine C.
Ikhiri K.
Ahond A.
Mourabit AA.
Poupat C.
Potier P.
Tetrahedron
2000,
56:
1837
14
Neuner-Jehle N.
Nesvadba H.
Spiteller G.
Monatsh. Chem.
1965,
96:
321
15a
Glass RS.
Deardorff DR.
Gains LH.
Tetrahedron Lett.
1978,
2965
15b
Wilson SR.
Sawicki RA.
Huffman JC.
J. Org. Chem.
1981,
46:
3887
15c
Tufariello JJ.
Merckler H.
Winzenberg K.
J. Org. Chem.
1986,
51:
3556
16
Huang P.-Q.
Zheng X.
Wang S.-L.
Ye J.-L.
Jin L.-R.
Chen Z.
Tetrahedron: Asymmetry
1999,
10:
3309
17a
Screttas CG.
Micha-Screttas M.
J. Org. Chem.
1978,
43:
1064
17b
Freeman PK.
Hutchinson LL.
J. Org. Chem.
1980,
45:
1924
17c
Cohen T.
Matz JR.
J. Am. Chem. Soc.
1980,
102:
6900
17d
Tsunoda T.
Fujiwara K.
Yamamoto Y.
Ito S.
Tetrahedron Lett.
1991,
32:
1975
17e For reviews, see: Cohen T.
Bhupathy M.
Acc. Chem. Res.
1989,
22:
152
17f
Yus M.
Chem. Soc. Rev.
1996,
25:
155
17g
Cohen T.
Pure Appl. Chem.
1996,
68:
913
For analogue glycosyl dianions, see:
18a
Hoffmann M.
Kessler H.
Tetrahedron Lett.
1994,
35:
6067
18b
Urban D.
Skrydstrup T.
Riche C.
Chiaroni A.
Beau JM.
Chem. Commun.
1996,
1883
18c
Westermann B.
Walter A.
Diedrichs N.
Angew. Chem. Int. Ed.
1999,
38:
3384
19
Tang T.
Zhu C.
Huang P.-Q.
Heterocycles
2004,
64:
in press ; (http://www.heterocycles.jp/heterohtml/index.html)
20
Wijberg JBPA.
Schoemaker HE.
Speckamp WN.
Tetrahedron
1978,
34:
179
21 All new compounds gave satisfactory analytical and spectral data.
22
General Procedure for the One-Pot Synthesis of Compounds 10a-h:
To a solution of phenyl thioether 7 (0.48 mmol) in anhyd THF (1.6 mL) at -78 °C was added successively n-BuLi (2.0 M solution in n-hexane, 0.69 mmol) and freshly prepared lithium naphthalenide (1.5 M solution in THF, 1.36 mmol). After being stirred for 30 min, an electrophile (0.70 mmol) was added. The stirring was maintained at -78 °C for 1 h, then allowed to warm to 0 °C. A sat. aq solution of NH4Cl was added and the mixture was extracted with CH2Cl2 (3 × 5 mL). The combined organic layers were dried over Na2SO4, filtered and concentrated in vacuo. Flash chromatography (EtOAc-petroleum ether = 1:3) of the crude afforded the desired product 10b-i and a small amount of reduced product 10a.
Data for 10b: Electrophile used: acetone. Yield 86%; colorless oil; [α]D
20 -4.95 (c 1.0, CHCl3). IR (film): νmax = 3421, 3319, 2975, 1697, 1669, 1535, 1399, 1246, 1170, 1122 cm-1. 1H NMR (500 MHz, CDCl3): δ(rotamers) = 1.15 (br s, 3 H), 1.34 (br s, 3 H), 1.48 (s, 9 H), 1.68-1.78 (m, 1 H), 2.20-2.32 (m, 1 H), 3.28-3.36 (m, 1 H), 3.60-3.80 (m, 2 H), 4.10-4.20 (m, 1 H), 4.80-5.00 (m, 2 H), 5.10 (m, 2 H), 7.28-7.40 (m, 5 H). 13C NMR (125 MHz, DMSO-d
6): δ(rotamers) = 28.26 (1 C), 28.38 (1 C), 29.58 (3 C), 30.19, 30.66, 31.10 (1 C), 43.88, 44.15 (1 C), 49.89 (1 C), 50.38, 50.68 (1 C), 65.57, 65.70 (1 C), 72.22 (1 C), 78.51, 78.83 (1 C), 128.00, 128.06, 128.48, 128.57, 137.23, 137.38 (6 C), 153.72 (1 C), 155.68, 155.97 (1 C). MS (ESI): m/z (%) = 379 (100) [M + H+], 401 (60) [M + Na+]. HRMS: m/z calcd for [C20H30N2O5 + H]+: 379.2234; found: 379.2233.
23
Rychnovsky SD.
Skalitzky DJ.
J. Org. Chem.
1992,
57:
4336
24
Sibi MP.
Christensen JW.
J. Org. Chem.
1999,
64:
6434
25 In the reported 1H NMR and 13C NMR spectral data of 1-aminopyrrolizidine and its derivatives (13,
[10a]
14,
[10a]
[12]
4,
[11]
[12]
and 5
[11]
[12]
), some differences exist from one to the other. This may be due to conformational isomerism and/or H-bond formation in the 1-aminopyrrolizidine ring system. In addition, these molecules were shown to be labile.
26 We thank Dr. C. Poupat (Institut de Chimie des Substances Naturelles, CNRS, France) for sending us a sample of natural absouline.