References
-
For reviews involving the generation and application of α-lithioamines, see:
-
1a
Gant TG.
Meyers AI.
Tetrahedron
1994,
50:
2297
-
1b
Beak P.
Basu A.
Gallagher DJ.
Park YS.
Thayumanavan S.
Acc. Chem. Res.
1996,
29:
552
-
1c
Gawley RE.
Curr. Org. Chem.
1997,
1:
71
-
1d
Kessar SV.
Singh P.
Chem. Rev.
1997,
97:
721
-
1e
Katritzky A.
Qi M.
Tetrahedron
1998,
54:
2647
-
1f
Husson HP.
Royer J.
Chem. Soc. Rev.
1999,
28:
383
-
1g
Rassu G.
Zanardi F.
Battistini L.
Casiraghi G.
Chem. Soc. Rev.
2000,
29:
109
-
For representative approaches to optically active α-lithiopyrrolidines and α-lithiopiperidines, see:
-
2a
Meyers AI.
Dickman DA.
Bailey TR.
J. Am. Chem. Soc.
1985,
107:
7974
-
2b
Huang P.-Q.
Arseniyadis S.
Husson H.-P.
Tetrahedron Lett.
1987,
28:
547
-
2c
Gawley RE.
Hart GC.
Bartolotti LJ.
J. Org. Chem.
1989,
54:
175
-
2d
Pearson WH.
Lindbeck AC.
Kampf JW.
J. Am. Chem. Soc.
1993,
115:
2622
-
2e
Wu S.
Lee S.
Beak P.
J. Am. Chem. Soc.
1996,
118:
715
-
2f
Coldham I.
Hufton R.
Snowden D.
J. Am. Chem. Soc.
1996,
118:
5322
-
2g
Dearden MJ.
Firkin CR.
Hermet J.-PR.
O’Brien P.
J. Am. Chem. Soc.
2002,
124:
11870
-
2h
Wiberg KB.
Bailey WF.
Angew. Chem. Int. Ed.
2000,
39:
2127
-
2i
Watson RT.
Gore VK.
Chandupatla KR.
Dieter RK.
Snyder JP.
J. Org. Chem.
2004,
69:
6105
- 3 For a racemic synthetic equivalent to synthon 2 (X = O), see: Thompson SHJ.
Subramanian RS.
Roberts JK.
Hadley MS.
J. Chem. Soc., Chem. Commun.
1994,
933
-
For chiral non-racemic synthetic equivalents to synthon 2 (X = O), see:
-
4a
Huang P.-Q.
Wu T.-J.
Ruan Y.-P.
Org. Lett.
2003,
5:
4341
-
4b
Huang P.-Q.
Deng J.
Synlett
2004,
247
- 5
Beak P.
Lee WK.
J. Org. Chem.
1993,
58:
1109
-
6a
Sunose M.
Peakman TM.
Charmant JPH.
Gallagher T.
Macdonald SJF.
Chem. Commun.
1998,
1723
-
6b
Pandey G.
Chakrabarti D.
Tetrahedron Lett.
1998,
39:
8371 ; and references cited therein
-
For approaches to optically active 2-substituted 3-aminopyrrolidines, see:
-
7a
Iwanami S.
Takashima M.
Hirata Y.
Hasegawa O.
Usuda S.
J. Med. Chem.
1981,
24:
1224
-
7b
Drugs Future
1991,
16:
95
-
7c
Andres CJ.
Lee PH.
Nguyen TH.
Meyers AI.
J. Org. Chem.
1995,
60:
3189
-
7d
Huang P.-Q.
Wang SL.
Ye JL.
Ruan YP.
Huang YQ.
Zheng H.
Gao J.
Tetrahedron
1998,
54:
12547
-
7e
Borthwick AD.
Crame AJ.
Davies DE.
Exall AM.
Jackson DL.
Mason AM.
Pennell AMK.
Weingarten GG.
Synlett
2000,
504
-
7f
Cooke JWB.
Berry MB.
Caine DM.
Cardwell KS.
Cook JS.
Hodgson A.
J. Org. Chem.
2001,
66:
334
-
7g
Andrews DM.
Carey SJ.
Chaignot H.
Coomber BA.
Gray NM.
Hind SL.
Jones PS.
Mills G.
Robinson JE.
Slater MJ.
Org. Lett.
2002,
4:
4475
-
For approaches to racemic 2-substituted 3-aminopyrrolidines, see:
-
8a
MacDonald SJF.
Clarke GDE.
Dowle MD.
Harrison LA.
Hodgson ST.
Inglis GGA.
Johnson MR.
Shah P.
Upton RJ.
Walls SB.
J. Org. Chem.
1999,
64:
5166
-
8b
Norton Matos MRP.
Afonso CAM.
Batey RA.
Tetrahedron Lett.
2001,
42:
7007
-
8c
Suero R.
Gorgojo JM.
Aurrecoechea M.
Tetrahedron
2002,
58:
6211
- 9
Flynn DL.
Zabrowski DL.
Becker DP.
Nosal R.
Villamil CI.
Gullickson GW.
Moummi C.
Yang D.-C.
J. Med. Chem.
1992,
35:
1489
-
10a For a recent asymmetric synthesis of 1-aminopyrrolizidine, see: Giri N.
Petrini M.
Profeta R.
J. Org. Chem.
2004,
69:
7303
-
10b For an approach to optically active 1-aminopyrrolizidin-3-one derivative, see: Langlois N.
Radom M.-O.
Tetrahedron Lett.
1998,
39:
857
-
For approaches to racemic 1-aminopyrrolizidines, see:
-
11a
Suri KA.
Suri OP.
Sawhney RS.
Gupta OP.
Atal CK.
Indian J. Chem., Sect. B
1977,
15:
972
-
11b
Suri KA.
Suri OP.
Atal CK.
Indian J. Chem., Sect. B
1983,
22:
822
-
11c
Zabrowski DL.
Becker DP.
Nosal R.
Villamil CI.
Gullikson GW.
Moummi C.
Yang D.-C.
J. Med. Chem.
1992,
35:
1486
-
11d
Ref.
[13]
- 12
Ikhiri K.
Ahond A.
Poupat C.
Potier P.
Pusset J.
Sévenet T.
J. Nat. Prod.
1987,
50:
626
- 13 For preparation of both enantiomers of absouline by racemic synthesis followed by chiral HPLC separation, see: Christine C.
Ikhiri K.
Ahond A.
Mourabit AA.
Poupat C.
Potier P.
Tetrahedron
2000,
56:
1837
- 14
Neuner-Jehle N.
Nesvadba H.
Spiteller G.
Monatsh. Chem.
1965,
96:
321
-
15a
Glass RS.
Deardorff DR.
Gains LH.
Tetrahedron Lett.
1978,
2965
-
15b
Wilson SR.
Sawicki RA.
Huffman JC.
J. Org. Chem.
1981,
46:
3887
-
15c
Tufariello JJ.
Merckler H.
Winzenberg K.
J. Org. Chem.
1986,
51:
3556
- 16
Huang P.-Q.
Zheng X.
Wang S.-L.
Ye J.-L.
Jin L.-R.
Chen Z.
Tetrahedron: Asymmetry
1999,
10:
3309
-
17a
Screttas CG.
Micha-Screttas M.
J. Org. Chem.
1978,
43:
1064
-
17b
Freeman PK.
Hutchinson LL.
J. Org. Chem.
1980,
45:
1924
-
17c
Cohen T.
Matz JR.
J. Am. Chem. Soc.
1980,
102:
6900
-
17d
Tsunoda T.
Fujiwara K.
Yamamoto Y.
Ito S.
Tetrahedron Lett.
1991,
32:
1975
-
17e For reviews, see: Cohen T.
Bhupathy M.
Acc. Chem. Res.
1989,
22:
152
-
17f
Yus M.
Chem. Soc. Rev.
1996,
25:
155
-
17g
Cohen T.
Pure Appl. Chem.
1996,
68:
913
-
For analogue glycosyl dianions, see:
-
18a
Hoffmann M.
Kessler H.
Tetrahedron Lett.
1994,
35:
6067
-
18b
Urban D.
Skrydstrup T.
Riche C.
Chiaroni A.
Beau JM.
Chem. Commun.
1996,
1883
-
18c
Westermann B.
Walter A.
Diedrichs N.
Angew. Chem. Int. Ed.
1999,
38:
3384
- 19
Tang T.
Zhu C.
Huang P.-Q.
Heterocycles
2004,
64:
in press ; (http://www.heterocycles.jp/heterohtml/index.html)
- 20
Wijberg JBPA.
Schoemaker HE.
Speckamp WN.
Tetrahedron
1978,
34:
179
- 23
Rychnovsky SD.
Skalitzky DJ.
J. Org. Chem.
1992,
57:
4336
- 24
Sibi MP.
Christensen JW.
J. Org. Chem.
1999,
64:
6434
21 All new compounds gave satisfactory analytical and spectral data.
22
General Procedure for the One-Pot Synthesis of Compounds 10a-h:
To a solution of phenyl thioether 7 (0.48 mmol) in anhyd THF (1.6 mL) at -78 °C was added successively n-BuLi (2.0 M solution in n-hexane, 0.69 mmol) and freshly prepared lithium naphthalenide (1.5 M solution in THF, 1.36 mmol). After being stirred for 30 min, an electrophile (0.70 mmol) was added. The stirring was maintained at -78 °C for 1 h, then allowed to warm to 0 °C. A sat. aq solution of NH4Cl was added and the mixture was extracted with CH2Cl2 (3 × 5 mL). The combined organic layers were dried over Na2SO4, filtered and concentrated in vacuo. Flash chromatography (EtOAc-petroleum ether = 1:3) of the crude afforded the desired product 10b-i and a small amount of reduced product 10a.
Data for 10b: Electrophile used: acetone. Yield 86%; colorless oil; [α]D
20 -4.95 (c 1.0, CHCl3). IR (film): νmax = 3421, 3319, 2975, 1697, 1669, 1535, 1399, 1246, 1170, 1122 cm-1. 1H NMR (500 MHz, CDCl3): δ(rotamers) = 1.15 (br s, 3 H), 1.34 (br s, 3 H), 1.48 (s, 9 H), 1.68-1.78 (m, 1 H), 2.20-2.32 (m, 1 H), 3.28-3.36 (m, 1 H), 3.60-3.80 (m, 2 H), 4.10-4.20 (m, 1 H), 4.80-5.00 (m, 2 H), 5.10 (m, 2 H), 7.28-7.40 (m, 5 H). 13C NMR (125 MHz, DMSO-d
6): δ(rotamers) = 28.26 (1 C), 28.38 (1 C), 29.58 (3 C), 30.19, 30.66, 31.10 (1 C), 43.88, 44.15 (1 C), 49.89 (1 C), 50.38, 50.68 (1 C), 65.57, 65.70 (1 C), 72.22 (1 C), 78.51, 78.83 (1 C), 128.00, 128.06, 128.48, 128.57, 137.23, 137.38 (6 C), 153.72 (1 C), 155.68, 155.97 (1 C). MS (ESI): m/z (%) = 379 (100) [M + H+], 401 (60) [M + Na+]. HRMS: m/z calcd for [C20H30N2O5 + H]+: 379.2234; found: 379.2233.
25 In the reported 1H NMR and 13C NMR spectral data of 1-aminopyrrolizidine and its derivatives (13,
[10a]
14,
[10a]
[12]
4,
[11]
[12]
and 5
[11]
[12]
), some differences exist from one to the other. This may be due to conformational isomerism and/or H-bond formation in the 1-aminopyrrolizidine ring system. In addition, these molecules were shown to be labile.
26 We thank Dr. C. Poupat (Institut de Chimie des Substances Naturelles, CNRS, France) for sending us a sample of natural absouline.