Abstract
A greatly improved, reliable protocol for the palladium-catalyzed cross-coupling of
dialkyl phosphites with aryl bromides has been developed. The use of an alcoholic
solvent was the key to high yields in the synthesis of a broad variety of arylphosphonates,
with Pd(OAc)2 /PPh3 as the catalyst and a sterically demanding tertiary amine as the base.
Key words
palladium - catalysis - arylphosphonates - cross-coupling - aryl halides
References <A NAME="RG45204ST-1">1 </A>
New correspondence address: Rheinisch-Westfälische Technische Hochschule Aachen, Institut
für Organische Chemie, Professor-Pirlet-Straße 1, 52074 Aachen, Germany.
<A NAME="RG45204ST-2A">2a </A>
Raboisson P.
Baurand A.
Cazenave J.-P.
Gachet C.
Schultz D.
Spiess B.
Bourguigon J.-J.
J. Org. Chem.
2002,
67:
8063
<A NAME="RG45204ST-2B">2b </A>
Holstein SA.
Cermak DM.
Wiemer DF.
Lewis K.
Hohl R.
J. Bioorg. Med. Chem.
1998,
6:
687
<A NAME="RG45204ST-2C">2c </A>
Lazrek HB.
Rochdi A.
Khaider H.
Barascut JL.
Imbach JL.
Balzarini J.
Witvrouw M.
Pannecouque C.
De Clercq E.
Tetrahedron
1998,
54:
3807
<A NAME="RG45204ST-2D">2d </A>
Smith PW.
Chamiec AJ.
Cobley KN.
Duncan K.
Howes PD.
Whittington AR.
Wood MR.
J. Antibiot.
1995,
48:
73
<A NAME="RG45204ST-3">3 </A>
Welch CM.
Gonzales EJ.
Guthrie JD.
J. Org. Chem.
1961,
26:
3270
<A NAME="RG45204ST-4">4 </A>
Jin JI. inventors; U.S. Patent 74-496233.
; Chem. Abstr . 1979 , 90 , 153010m
<A NAME="RG45204ST-5">5 </A>
Kosolapoff GM.
J. Am. Chem. Soc.
1952,
74:
4119
<A NAME="RG45204ST-6A">6a </A>
Doak GO.
Freedman LD.
J. Am. Chem. Soc.
1951,
73:
5658
<A NAME="RG45204ST-6B">6b </A>
Freedman LD.
Doak GO.
J. Am. Chem. Soc.
1955,
77:
173
<A NAME="RG45204ST-7">7 </A>
Boumekouez A.
About-Jaudet E.
Savignac NCP.
J. Organomet. Chem.
1992,
440:
297
<A NAME="RG45204ST-8A">8a </A>
Yuan C.
Feng H.
Synthesis
1990,
140
<A NAME="RG45204ST-8B">8b </A>
Tavas P.
Chem. Ber.
1970,
103:
2428
<A NAME="RG45204ST-8C">8c </A>
Tavas P.
Korte F.
Tetrahedron
1967,
23:
4677
<A NAME="RG45204ST-8D">8d </A>
Gelman D.
Jiang L.
Buchwald SL.
Org. Lett.
2003,
5:
2315
<A NAME="RG45204ST-8E">8e </A>
Osuka A.
Ohmasa N.
Yoshida Y.
Suzuki H.
Synthesis
1983,
69
<A NAME="RG45204ST-9A">9a </A>
Burger A.
Dawson ND.
J. Org. Chem.
1951,
16:
1250
<A NAME="RG45204ST-9B">9b </A>
Edmundson RS.
Wrigley JOL.
Tetrahedron
1967,
23:
283
<A NAME="RG45204ST-9C">9c </A>
Freeman S.
Harger MJ.
J. Chem. Soc., Perkin Trans. 1
1987,
1399
<A NAME="RG45204ST-10A">10a </A>
Hirao T.
Masunga T.
Ohshiro Y.
Agawa T.
Synthesis
1981,
56
<A NAME="RG45204ST-10B">10b </A>
Hirao T.
Masunga T.
Yamada N.
Ohshiro Y.
Agawa T.
Bull. Chem. Soc. Jpn.
1982,
55:
909
<A NAME="RG45204ST-10C">10c </A>
Petrakis KS.
Nagabhushan TL.
J. Am. Chem. Soc.
1987,
109:
2831
<A NAME="RG45204ST-10D">10d </A>
Ngo HL.
Lin W.
J. Am. Chem. Soc.
2002,
124:
14298
For an overview on catalytic carbon-heteroatom bond formations, see e.g.:
<A NAME="RG45204ST-11A">11a </A>
Beletskaya IP.
Pure Appl. Chem.
1997,
69:
471
<A NAME="RG45204ST-11B">11b </A>
Hartwig JF.
Palladium-Catalyzed Amination of Aryl Halides and Related Reactions , In Handbook of Organopalladium Chemistry for Organic Synthesis
Vol. 1:
Negishi E.-I.
de Meijere A.
Wiley-Interscience;
New York:
2002.
p.1051-1096
<A NAME="RG45204ST-12">12 </A>
Kabachnik MM.
Solntseva MD.
Izmer VV.
Novikova ZS.
Beletskaya IP.
Russ. J. Org. Chem.
1998,
34:
93
<A NAME="RG45204ST-13">13 </A>
Synthesis of Diethyl p
-Toluenephosphonate (Representative Experimental Procedure).
A 200 mL round bottom flask equipped with a reflux condenser and a magnetic stirring
bar was charged with Pd(OAc)2 (45 mg, 0.2 mmol) and PPh3 (157 mg, 0.6 mmol). The reaction vessel was evacuated and purged with argon. Subsequently,
EtOH (40 mL), p -bromotoluene (1.71 g, 10 mmol), dicyclohexylmethylamine (2.93 g, 15 mmol) and diethyl
phosphite (1.55 mL, 12 mmol) were added via syringe. The reaction mixture was stirred
at reflux for 16 h, and the resulting yellow solution was diluted with EtOAc (300
mL) and washed with 1 N HCl, sat. aq NaHCO3 and brine. The organic layer was dried over MgSO4 , filtered, the volatiles were removed in vacuo and the residue was purified by column
chromatography (SiO2 , hexanes-EtOAc, 1:3), yielding 2.06 g (90%) of 3e as a colorless oil. The reactions in Table
[2 ]
were performed on 1 mmol scale, the products were purified by flash chromatography
(SiO2 , hexanes-EtOAc) and characterized by means of 1 H NMR and 13 C NMR, GC-MS and HRMS.