Synlett 2008(10): 1539-1542  
DOI: 10.1055/s-2008-1078416
CLUSTER
© Georg Thieme Verlag Stuttgart · New York

Dehydrative Amination of Alcohols in Water Using a Water-Soluble Calix[4]resorcinarene Sulfonic Acid

Seiji Shirakawa, Shoichi Shimizu*
Department of Applied Molecular Chemistry and High Technology Research Center, College of Industrial Technology, Nihon University, Narashino, Chiba 275-8575, Japan
Fax: +81(47)4742579; e-Mail: s5simizu@cit.nihon-u.ac.jp;
Further Information

Publication History

Received 5 January 2008
Publication Date:
16 May 2008 (online)

Abstract

A protocol for the dehydrative amination of alcohols in water using a water-soluble calix[4]resorcinarene sulfonic acid as a reusable multifunctional catalyst was developed.

    References and Notes

  • 1a Lawrence SA. Amines: Synthesis, Properties and Applications   Cambridge University Press; Cambridge: 2004. 
  • 1b Hartwig JF. In Handbook of Organopalladium Chemistry for Organic Synthesis   Vol. 1:  Negishi E.-I. Wiley-Interscience; New York: 2002.  p.1051-1096  
  • 2a Tsuji J. Transition Metal Reagents and Catalysts: Innovations in Organic Synthesis   Wiley; Chichester: 2000. 
  • 2b Trost BM. Lee C. In Catalytic Asymmetric Synthesis   2nd ed.:  Ojima I. Wiley-VCH; Weinheim: 2000.  p.593-649  
  • 2c Johannsen M. Jørgensen KA. Chem. Rev.  1998,  98:  1689 
  • For reviews of palladium-catalyzed amination of allylic alcohols, see:
  • 3a Muzart J. Eur. J. Org. Chem.  2007,  3077 
  • 3b Muzart J. Tetrahedron  2005,  61:  4179 
  • 3c Tamaru Y. Eur. J. Org. Chem.  2005,  2647 
  • For recent examples of metal-catalyzed amination of alcohols, see:
  • 4a Qin H. Yamagiwa N. Matsunaga S. Shibasaki M. Angew. Chem. Int. Ed.  2007,  46:  409 
  • 4b Yamashita Y. Gopalarathnam A. Hartwig JF. J. Am. Chem. Soc.  2007,  129:  7508 
  • 4c Utsunomiya M. Miyamoto Y. Ipposhi J. Ohshima T. Mashima K. Org. Lett.  2007,  9:  3371 
  • 4d Tillack A. Hollmann D. Michalik D. Beller M. Tetrahedron Lett.  2006,  47:  8881 
  • 4e Terrasson V. Marque S. Georgy M. Campagne J.-M. Prim D. Adv. Synth. Catal.  2006,  348:  2063 
  • 4f Nishibayashi Y. Milton MD. Inada Y. Yoshikawa M. Wakiji I. Hidai M. Uemura S. Chem. Eur. J.  2005,  11:  1433 
  • A few examples of Brønsted acid catalyzed amination of alcohols were reported, see:
  • 5a Motokura K. Nakagiri N. Mori K. Mizugaki T. Ebitani K. Jitsukawa K. Kaneda K. Org. Lett.  2006,  8:  4617 
  • 5b Sanz R. Martínez A. Álvarez-Gutiérrez JM. Rodríguez F. Eur. J. Org. Chem.  2006,  1383 
  • 6a Li C.-J. Chem. Rev.  2005,  105:  3095 
  • 6b Kobayashi S. Manabe K. Acc. Chem. Res.  2002,  35:  209 
  • 6c Organic Synthesis in Water   Grieco PA. Blackie Academic and Professional; London: 1998. 
  • 6d Li C.-J. Chan T.-H. Organic Reactions in Aqueous Media   Wiley; New York: 1997. 
  • 6e Li C.-J. Chem. Rev.  1993,  93:  2023 
  • 7a Aqueous-Phase Organometallic Catalysis: Concepts and Applications, 2nd, Completely Revised and Enlarged Edition   Cornils B. Herrmann WA. Wiley-VCH; Weinheim: 2004. 
  • 7b Aqueous-Phase Organometallic Catalysis: Concepts and Applications   Cornils B. Herrmann WA. Wiley-VCH; Weinheim: 1998. 
  • For examples, see:
  • 8a Bradley D. Williams G. Lombard H. Holzapfel CW. Synth. Commun.  2001,  31:  2077 
  • 8b Yonehara K. Hashizume T. Mori K. Ohe K. Uemura S. J. Org. Chem.  1999,  64:  5593 
  • 8c Purwanto P. Delmas H. Catal. Today  1995,  24:  135 
  • 8d Kobayashi S. Hachiya I. Yamanoi Y. Bull. Chem. Soc. Jpn.  1994,  67:  2342 
  • 8e Monteil F. Queau R. Kalck P. J. Organomet. Chem.  1994,  480:  177 
  • For examples, see:
  • 9a Hamada T. Manabe K. Kobayashi S. Chem. Eur. J.  2006,  12:  1205 
  • 9b Mori Y. Manabe K. Kobayashi S. Angew. Chem. Int. Ed.  2001,  40:  2815 
  • 9c Lautens M. Roy A. Fukuoka K. Fagnou K. Martín-Matute B. J. Am. Chem. Soc.  2001,  123:  5358 
  • 9d Tian H.-Y. Chen Y.-J. Wang D. Bu Y.-P. Li C.-J. Tetrahedron Lett.  2001,  42:  1803 
  • 9e Tian H.-Y. Chen Y.-J. Wang D. Zeng C.-C. Li C.-J. Tetrahedron Lett.  2000,  41:  2529 
  • 9f Manabe K. Mori Y. Wakabayashi T. Nagayama S. Kobayashi S. J. Am. Chem. Soc.  2000,  122:  7202 
  • For reviews, see:
  • 10a Starks CM. Liotta CL. Halpern M. In Phase-Transfer Catalysis: Fundamentals, Applications, and Industrial Perspectives   Chapman; London: 1994.  p.179-183  
  • 10b Goldberg Y. In Phase-Transfer Catalysis: Selected Problems and Applications   Gordon; Berkshire: 1992.  p.359-366  
  • 11a Shimizu S. Suzuki T. Shirakawa S. Sasaki Y. Hirai C. Adv. Synth. Catal.  2002,  344:  370 
  • 11b Shimizu S. Shirakawa S. Suzuki T. Sasaki Y. Tetrahedron  2001,  57:  6169 
  • 11c Shirakawa S. Shimizu S. Sasaki Y. New J. Chem.  2001,  25:  777 
  • 11d Shimizu S. Suzuki T. Sasaki Y. Hirai C. Synlett  2000,  1664 
  • 11e Shimizu S. Shirakawa S. Sasaki Y. Hirai C. Angew. Chem. Int. Ed.  2000,  39:  1256 
  • 11f Shimizu S. Kito K. Sasaki Y. Hirai C. Chem. Commun.  1997,  1629 
  • 12a Maksimov AL. Buchneva TS. Karakhanov EA. J. Mol. Catal. A: Chem.  2004,  217:  59 
  • 12b Karakhanov E. Buchneva T. Maximov A. Zavertyaeva M. J. Mol. Catal. A: Chem.  2002,  184:  11 
  • 12c Baur M. Frank M. Schatz J. Schildbach F. Tetrahedron  2001,  57:  6985 
  • 13 Shimizu S. Shimada N. Sasaki Y. Green Chem.  2006,  8:  608 
  • For other examples of Brønsted acid catalyzed three-component Mannich-type reactions in water, see:
  • 14a Shirakawa S. Kobayashi S. Org. Lett.  2006,  8:  4939 
  • 14b Akiyama T. Takaya J. Kagoshima H. Adv. Synth. Catal.  2002,  344:  338 
  • 14c Manabe K. Mori Y. Kobayashi S. Tetrahedron  2001,  57:  2537 
  • For palladium-catalyzed amination of allylic alcohols in water, see:
  • 15a Yang S.-C. Hsu Y.-C. Gan K.-H. Tetrahedron  2006,  62:  3949 
  • 15b Kinoshita H. Shinokubo H. Oshima K. Org. Lett.  2004,  6:  4085 
  • For surfactant-type Brønsted acid catalyzed dehydrative reactions in water, see:
  • 16a Shirakawa S. Kobayashi S. Org. Lett.  2007,  9:  311 
  • 16b Manabe K. Iimura S. Sun X.-M. Kobayashi S. J. Am. Chem. Soc.  2002,  124:  11971 
  • For recent examples of dehydrative nucleophilic substitution reactions of alcohols with carbon nucleophiles, see:
  • 18a Motokura K. Nakagiri N. Mizugaki T. Ebitani K. Kaneda K. J. Org. Chem.  2007,  72:  6006 
  • 18b Noji M. Konno Y. Ishii K. J. Org. Chem.  2007,  72:  5161 
  • 18c Kischel J. Mertins K. Michalik D. Zapf D. Beller M. Adv. Synth. Catal.  2007,  349:  865 
  • 18d Saito T. Nishimoto Y. Yasuda M. Baba A. J. Org. Chem.  2006,  71:  8516 
  • 18e Rueping M. Nachtsheim BJ. Ieawsuwan W. Adv. Synth. Catal.  2006,  348:  1033 
  • 18f Sanz R. Martínez A. Miguel D. Álvarez-Gutiérrez JM. Rodríguez F. Adv. Synth. Catal.  2006,  348:  1841 
  • 20 Kazakova EK. Makarova NA. Ziganshina AU. Muslinkina LA. Muslinkin AA. Habicher WD. Tetrahedron Lett.  2000,  41:  10111 
17

The reactions using simple aliphatic alcohols such as hexanol and cyclohexanol gave no amination product.

19

General Experimental Procedure for Dehydrative Amination in H 2 O (Table 2): Alcohol (0.30 mmol) and p-toluenesulfonamide (0.45 mmol) were added to a solution of water-soluble calix[4]resorcinarene sulfonic acid 1 13,20 (0.030 mmol) in H2O (1 mL) with stirring, and the reaction mixture was vigorously stirred at 60 °C for an additional 24 h. After the addition of sat. aq NaHCO3 solution (3 mL), the resulting mixture was extracted with EtOAc (3 × 3 mL). The combined extracts were dried over anhyd Na2SO4 and evaporated. The products were purified by flash chromatography on silica gel to yield the amination product.
Recycling Experiments (Table 3): Alcohol (0.90 mmol) and p-toluenesulfonamide (1.08 mmol) were added to a solution of water-soluble calix[4]resorcinarene sulfonic acid 1 (0.090 mmol) in H2O (3 mL) with stirring, and the reaction mixture was vigorously stirred at 60 °C for an additional 24 h. After each reaction, EtOAc (3 mL) was added to the reaction mixture, and the solution was stirred for 5 min. The resulting mixture was allowed to stand for 5 min and then the organic phase was removed via a syringe. This extraction procedure was repeated twice. The remaining aqueous catalyst solution was reused directly in the next cycle. Isolation of the amination product 2a was performed in a manner similar to that described above.