Synlett 2023; 34(16): 1845-1851
DOI: 10.1055/a-2072-3025
synpacts

Palladium-Catalyzed Asymmetric Cycloaddition/Cope Rearrangement Relay: Synthesis of Chiral Endocyclic Allenes

Bin Shi
a   CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, P. R. of China
,
Wen-Jing Xiao
a   CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, P. R. of China
,
Liang-Qiu Lu
a   CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, P. R. of China
b   State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, Gansu 730000, P. R. of China
b   School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. of China
› Author Affiliations
This work was supported by National Natural Science Foundation of China (No. 22271113, 92256301, 21820102003 and 91956201), the Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, and the Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction (Ministry of Education).


Abstract

The synthesis of chiral endocyclic allenes, especially the medium-sized ones, remains a challenge in allene chemistry due to unfavorable tension and difficult stereocontrol. Herein, an efficient protocol for the construction of chiral nine-membered endocyclic allenes via palladium-catalyzed asymmetric cycloaddition/Cope rearrangement relay of vinyl carbonates with activated enynes is highlighted. This process provides rapid access to a variety of chiral nine-membered endocyclic allenes in good yields with excellent enantioselectivities. In particular, a chiral P,S-ligand shows good performance on stereoinduction, generating central and axial chirality in a single transformation, which is rationalized by DFT calculations and by a proposed transition state.

1 Introduction

2 Pd-Catalyzed Asymmetric Cycloaddition/Cope Rearrangement Relay

3 Plausible Mechanism and Stereochemical Outcome

4 Conclusion and Outlook



Publication History

Received: 04 April 2023

Accepted: 12 April 2023

Accepted Manuscript online:
12 April 2023

Article published online:
22 May 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 van t Hoff JH. La Chemie dans l’espace . Bazendijk; Rotterdam: 1875: 29
  • 2 Alcaide B, Almendros P. Chem. Soc. Rev. 2014; 43: 2886
  • 4 Hoffmann-Röder A, Krause N. Angew. Chem. Int. Ed. 2004; 43: 1196
  • 5 Rivera-Fuentes P, Diederich F. Angew. Chem. Int. Ed. 2012; 51: 2818

    • For recent selected works, see:
    • 6a Wang H.-N, Luo H.-W, Zhang Z.-M, Zheng W.-F, Yin Y, Qian H, Zhang J.-L, Ma S.-M. J. Am. Chem. Soc. 2020; 142: 9763
    • 6b Law C.-Y, Kativhu E, Wang J, Morken JP. Angew. Chem. Int. Ed. 2020; 59: 10311
    • 6c Zeng Y.-H, Chiou M.-F, Zhu X.-T, Cao J, Lv D.-Q, Jian W.-J, Li Y.-J, Zhang X.-H, Bao H.-L. J. Am. Chem. Soc. 2020; 142: 18014
    • 6d Dong X.-Y, Zhan T.-Y, Jiang S.-P, Liu X.-D, Ye L, Li Z.-L, Gu Q.-S, Liu X.-Y. Angew. Chem. Int. Ed. 2021; 60: 2160
    • 6e Yang L.-L, Ouyang J, Zou H.-N, Zhu S.-F, Zhou Q.-L. J. Am. Chem. Soc. 2021; 143: 6401
    • 6f Zhang J.-C, Huo X.-H, Xiao J.-Z, Zhao L, Ma S.-M, Zhang W.-B. J. Am. Chem. Soc. 2021; 143: 12622

      For recent examples:
    • 7a Chu W.-D, Zhang L, Zhang Z.-K, Zhou Q, Mo F.-Y, Zhang Y, Wang J.-B. J. Am. Chem. Soc. 2016; 138: 14558
    • 7b Trost BM, Zell D, Hohn C, Mata G, Maruniak A. Angew. Chem. Int. Ed. 2018; 57: 12916
    • 7c He C.-Y, Tan Y.-X, Wang X, Ding R, Wang Y.-F, Wang F, Gao D.-D, Tian P, Lin G.-Q. Nat. Commun. 2020; 11: 4293
  • 8 Johnson RP. Chem. Rev. 1989; 89: 1111
  • 9 Daoust KJ, Hernandez SM, Konrad KM, Mackie ID, Winstanley JJr, Johnson RP. J. Org. Chem. 2006; 71: 5708
    • 10a Marquis ET, Gardner PD. Tetrahedron Lett. 1966; 2793
    • 10b Price JD, Johnson RP. Tetrahedron Lett. 1986; 27: 4679

      For recent examples:
    • 11a Barber JS, Styduhar ED, Pham HV, McMahon TC, Houk KN, Garg NK. J. Am. Chem. Soc. 2016; 138: 2512
    • 11b Barber JS, Yamano MM, Ramirez M, Darzi ER, Knapp RR, Liu F, Houk KN, Garg NK. Nat. Chem. 2018; 10: 953
    • 11c Yamano MM, Knapp RR, Ngamnithiporn A, Ramirez M, Houk KN, Stoltz BM, Garg NK. Angew. Chem. Int. Ed. 2019; 58: 5653
    • 11d Kelleghan AV, Witkowski DC, McVeigh MS, Garg NK. J. Am. Chem. Soc. 2021; 143: 9338

      For selected works, see:
    • 12a Skattebøl L. Tetrahedron Lett. 1961; 167
    • 12b Moore WR, Ward HR. J. Org. Chem. 1962; 27: 4179
    • 12c Untch KG, Martin DJ, Castellucci NT. J. Org. Chem. 1965; 30: 3572
    • 12d Ball WJ, Landor SR. J. Chem. Soc. 1962; 2298
    • 12e Moore WR, Bertelson RC. J. Org. Chem. 1962; 27: 4182
  • 13 Janßen CE, Krause N. Eur. J. Org. Chem. 2005; 2322

    • For selected works, see:
    • 14a Brody MS, Williams RM, Finn MG. J. Am. Chem. Soc. 1997; 119: 3429
    • 14b Kulyk S, Dougherty WG. Jr, Kassel WS, Fleming SA, Sieburth SM. Org. Lett. 2010; 12: 3296
    • 14c Mömming CM, Kehr G, Wibbeling B, Fröhlich R, Schirmer B, Grimme S, Erker G. Angew. Chem. Int. Ed. 2010; 49: 2414

      For selected works, see:
    • 15a Sashida H, Tsuchiya T. Chem. Pharm. Bull. 1984; 32: 4600
    • 15b Sashida H, Tsuchiya T. Chem. Pharm. Bull. 1986; 34: 3644
    • 15c Perscheid M, Schollmeyer D, Nubbemeyer U. Eur. J. Org. Chem. 2011; 5250
    • 15d Voskressensky LG, Titov AA, Dzhankaziev MS, Borisova TN, Kobzev MS, Dorovatovskii PV, Khrustalev VN, Aksenov AV, Varlamov AV. New J. Chem. 2017; 41: 1902
  • 16 Zelder C, Krause N. Eur. J. Org. Chem. 2004; 3968
    • 17a Ogasawara M, Okada A, Nakajima K, Takahashi T. Org. Lett. 2009; 11: 177
    • 17b Ichio H, Murakami H, Chen Y, Takahashi T, Ogasawara M. J. Org. Chem. 2017; 82: 7503
  • 18 Sweeney ZK, Salsman JL, Andersen RA, Berman RG. Angew. Chem. Int. Ed. 2000; 39: 2339
  • 19 Zhang M.-M, Qu B.-L, Shi B, Xiao W.-J, Lu L.-Q. Chem. Soc. Rev. 2022; 51: 4146

    • For recent selected examples, see:
    • 20a Yang L.-C, Wang Y.-N, Liu R.-Y, Luo Y.-X, Ng X.-Q, Yang B.-M, Rong Z.-Q, Lan Y, Shao Z.-H, Zhao Y. Nat. Chem. 2020; 12: 860
    • 20b Trost BM, Zuo Z.-J. Angew. Chem. Int. Ed. 2020; 59: 1243
    • 20c Liu Y.-Z, Wang Z.-A, Huang Z.-S, Zheng X, Yang W.-L, Deng WP. Angew. Chem. Int. Ed. 2020; 59: 1238
    • 21a Wei Y, Lu L.-Q, Li T.-R, Feng B, Wang Q, Xiao W.-J, Alper H. Angew. Chem. Int. Ed. 2016; 55: 2200
    • 21b Li M.-M, Wei Y, Liu J, Chen H.-W, Lu L.-Q, Xiao W.-J. J. Am. Chem. Soc. 2017; 139: 14707
    • 21c Zhang Q.-L, Xiong Q, Li M.-M, Xiong W, Shi B, Lan Y, Lu L.-Q, Xiao W.-J. Angew. Chem. Int. Ed. 2020; 59: 14096
    • 21d Li M.-M, Qu B.-L, Xiao Y.-Q, Xiao W.-J, Lu L.-Q. Sci. Bull. 2021; 66: 1719
    • 21e Zhang M.-M, Chen P, Xiong W, Hui X.-S, Lu L.-Q, Xiao W.-J. CCS Chem. 2021; 4: 2620
    • 21f Wang B.-C, Wei Y, Xiong F.-Y, Qu B.-L, Xiao W.-J, Lu L.-Q. Sci. China Chem. 2022; 65: 2347

      For examples of nine-membered rings, see:
    • 22a Mukai C, Ohta M, Yamashita H, Kitagaki S. J. Org. Chem. 2004; 69: 6867
    • 22b Majhi TP, Neogi A, Ghosh S, Mukherjee AK, Helliwell M, Chattopadhyay P. Synthesis 2008; 94
    • 22c Chinthapally K, Massaro NP, Sharma I. Org. Lett. 2016; 18: 6340
    • 23a Ohnuma T, Hata N, Miyachi N, Wakamatsu T, Ban Y. Tetrahedron Lett. 1986; 27: 219
    • 23b Gao X, Xia M.-R, Yuan C.-H, Zhou L.-J, Sun W, Li C, Wu B, Zhu D.-Y, Zhang C, Zheng B, Wang D.-Q, Guo H.-C. ACS Catal. 2019; 9: 1645
    • 23c Wang Y, Cai P.-J, Yu Z.-X. J. Am. Chem. Soc. 2020; 142: 2777
  • 24 CCDC 2122960 contains the supplementary crystallographic data for compound 4da. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures