Synlett 2024; 35(12): 1327-1332
DOI: 10.1055/a-2160-7887
synpacts

Construction of Vicinal Stereocenters via Asymmetric Cyanosilylation

a   State Key Laboratory of Synthetic Chemistry, Department of Chemistry, University of Hong Kong, Hong Kong, P. R. of China
› Author Affiliations
We thank the National Natural Science Foundation of China (no. 22171238), Research Grants Council of Hong Kong (nos. 27301821, 17304523) for financial support. We acknowledge funding support from the Laboratory for Synthetic Chemistry and Chemical Biology under the Health@InnoHK Program launched by the Innovation and Technology Commission, the Government of HKSAR.


Abstract

Asymmetric cyanosilylation serves as an important tool to convert easily available ketones into cyanohydrins of diverse reactivity. Whereas a large library of organocatalysts and transition-metal catalysts have been identified for monoketones, cyanosilylation of more-complex substrates, particularly those giving enantioenriched vicinal stereocenters, is underexplored in comparison. Here, a pair of recently published kinetic resolution and desymmetrization methods are highlighted for their success in constructing complex vicinal stereocenters by cyanosilylation using tailored aluminum and magnesium catalysts, respectively.

1 Introduction

2 Kinetic Resolution of α-Branched Ketones

3 Desymmetrization of 1,3-Diketones

4 Conclusion



Publication History

Received: 09 August 2023

Accepted after revision: 25 August 2023

Accepted Manuscript online:
25 August 2023

Article published online:
05 October 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Lovering F, Bikker J, Humblet C. J. Med. Chem. 2009; 52: 6752
  • 2 Lovering F. MedChemComm 2013; 4: 515

    • For selected reviews, see:
    • 3a Long R, Huang J, Gong J, Yang Z. Nat. Prod. Rep. 2015; 32: 1584
    • 3b Büschleb M, Dorich S, Hanessian S, Tao D, Schenthal KB, Overman LE. Angew. Chem. Int. Ed. 2016; 55: 4156
    • 3c Zhou F, Zhu L, Pan B.-W, Shi Y, Liu Y.-L, Zhou J. Chem. Sci. 2020; 11: 9341

      For selected reviews of cyanosilylation of ketones, see:
    • 4a Brunel J.-M, Holmes IP. Angew. Chem. Int. Ed. 2004; 43: 2752
    • 4b North M, Usanov DL, Young C. Chem. Rev. 2008; 108: 5146
    • 4c Kurono N, Ohkuma T. ACS Catal. 2016; 6: 989
    • 4d Pahar S, Kundu G, Sen SS. ACS Omega 2020; 5: 25477
    • 4e Wu W.-B, Yu J.-S, Zhou J. ACS Catal. 2020; 10: 7668
  • 5 Wu W.-B, Yu X, Yu J.-S, Wang X, Wang W.-G, Zhou J. CCS Chem. 2022; 4: 2140

    • For selected examples, see:
    • 6a Zeng X.-P, Cao Z.-Y, Wang X, Chen L, Zhou F, Zhu F, Wang C.-H, Zhou J. J. Am. Chem. Soc. 2016; 138: 416
    • 6b Zeng X.-P, Zhou J. J. Am. Chem. Soc. 2016; 138: 8730
  • 7 Xu P, Shen C, Xu A, Low K.-H, Huang Z. Angew. Chem. Int. Ed. 2022; 61: e202208443

    • For selected examples, see:
    • 8a Xu P, Huang Z. Nat. Chem. 2021; 13: 634
    • 8b Zheng Y, Zhang S, Low K.-H, Zi W, Huang Z. J. Am. Chem. Soc. 2022; 144: 1951
    • 8c Xu P, Liu S, Huang Z. J. Am. Chem. Soc. 2022; 144: 6918
    • 8d Liu H, Lau HM, Xu P, Chan TH, Huang Z. Nat. Commun. 2022; 13: 4759