Subscribe to RSS
DOI: 10.1055/a-2493-7449
Scandium(III) Triflate Catalyzed Reductive Etherification of Carbonyl Compounds with Alcohols Using 1,1,3,3-Tetramethyldisiloxane as the Reducing Agent
Abstract
In this study, we present a straightforward protocol for the reductive etherification of carbonyl compounds with alcohols using a catalytic amount of scandium(III) triflate [Sc(OTf)3] and 1,1,3,3-tetramethyldisiloxane to produce nonsymmetrical ethers. The reaction proceeds under mild room-temperature conditions and accommodates a broad range of substrates, including α,β-unsaturated aldehydes, yielding the desired products in good to excellent yields. Notably, the catalyst loading of Sc(OTf)3 could be reduced to 0.1 mol%.
Key words
reduction - etherification - carbonyl compounds - ethers - scandium triflate catalysis - hydrosilanesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2493-7449.
- Supporting Information
Publication History
Received: 28 October 2024
Accepted after revision: 29 November 2024
Accepted Manuscript online:
29 November 2024
Article published online:
16 January 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References and Notes
- 1a Williamson AW. Liebigs Ann. Chem. 1851; 77: 37
- 1b Williamson AW. J. Chem. Soc. 1852; 106: 229
- 1c Dermer OC. Chem. Rev. 1934; 14: 385
- 2 Lluna-Galán C, Izquierdo-Aranda L, Adam R, Cabrero-Antonino JR. ChemSusChem 2021; 14: 3744
- 3a Delolo FG, Fessler J, Neumann H, Junge K, dos Santos EN, Gusevskaya EV, Beller M. Chem. Eur. J. 2022; 28: e202103903
- 3b Liu B, Li Y, Liu Q. Chem Catal. 2022; 2: 883
- 4 Kalutharage N, Yi CS. Org. Lett. 2015; 17: 1778
- 5 Wu D, Hernández WY, Zhang S, Vovk EI, Zhou X, Yang Y, Khodakov AY, Ordomsky VV. ACS Catal. 2019; 9: 2940
- 6 Bakos M, Gyömöre Á, Domján A, Soós T. Angew. Chem. Int. Ed. 2017; 56: 5217
- 7a Iglesias M, Fernández-Alvarez FJ, Oro LA. Coord. Chem. Rev. 2019; 386: 240
- 7b Li Z, Yu Z, Luo X, Li C, Wu H, Zhao W, Li H, Yang S. RSC Adv. 2020; 10: 33972
- 7c Davies JJ, Braddock DC, Lickiss PD. Org. Biomol. Chem. 2021; 19: 6746
- 7d Kong Y, Mu D. Chem. Asian J. 2022; e202200104
- 7e D’Amaral MC, Andrews KG, Denton R, Adler MJ. Synthesis 2023; 55: 3209
- 8a Doyle MP, DeBruyn DJ, Kooistra DA. J. Am. Chem. Soc. 1972; 94: 3659
- 8b Doyle MP, DeBruyn DJ, Donnelly SJ, Kooistra DA, Odubela AA, West CT, Zonnebelt SM. J. Org. Chem. 1974; 39: 2740
- 8c Doyle MP, West CT. J. Org. Chem. 1975; 40: 3821
- 8d Doyle MP, West CT. J. Org. Chem. 1975; 40: 3835
- 9 Doyle MP, West CT, Donnelly SJ, McOsker CC. J. Organomet. Chem. 1976; 117: 129
- 10a Tsunoda T, Suzuki M, Noyori R. Tetrahedron Lett. 1979; 20: 4679
- 10b Aizpurua JM, Lecea B, Palomo C. Can. J. Chem. 1986; 64: 2342
- 10c Sassaman MB, Kotian KD, Prakash GK. S, Olah GA. J. Org. Chem. 1987; 52: 4314
- 11 Kato J.-i, Iwasawa N, Mukaiyama T. Chem. Lett. 1985; 743
- 12 Yadav JS, Reddy BV. S, Shankar KS, Swamy T. Tetrahedron Lett. 2010; 51: 46
- 13 Komatsu N, Ishida J.-y, Suzuki H. Tetrahedron Lett. 1997; 38: 7219
- 14 Baek JY, Lee SJ, Han BH. J. Korean Chem. Soc. 2004; 48: 220
- 15 Bach P, Albright A, Laali KK. Eur. J. Org. Chem. 2009; 1961
- 16 Onaka M, Higuchi K, Nanami H, Izumi Y. Bull. Chem. Soc. Jpn. 1993; 66: 2638
- 17a Sakai N, Nagasawa K, Ikeda R, Nakaike Y, Konakahara T. Tetrahedron Lett. 2011; 52: 3133
- 17b Mineno T, Tsukagoshi R, Iijima T, Watanabe K, Miyashita H, Yoshimitsu H. Tetrahedron Lett. 2014; 55: 3765
- 17c Prajapati A, Kumar M, Thakuria R, Basak AK. Tetrahedron Lett. 2019; 60: 150955
- 18 Zhang Y.-J, Dayoub W, Chan G.-R, Lemaire M. Tetrahedron 2012; 68: 7400
- 19 Sakai N, Nonomura Y, Ikeda R, Konakahara T. Chem. Lett. 2013; 42: 489
- 20 Monsigny L, Thuéry P, Berthet J.-C, Cantat T. ACS Catal. 2019; 9: 9025
- 21 Liang T, Dong G, Li C, Xu X, Xu Z. Org. Lett. 2022; 24: 1817
- 22 Kulkarni SS, Wang C.-C, Sabbavarapu NM, Podilapu AR, Liao P.-H, Hung S.-C. Chem. Rev. 2018; 118: 8025
- 23a Yang W.-C, Lu X.-A, Kulkarni SS, Hung S.-C. Tetrahedron Lett. 2003; 44: 7837
- 23b Evans PA, Cui J, Gharpure SJ, Hinkle RJ. J. Am. Chem. Soc. 2003; 125: 11456
- 23c Evans PA, Cui J, Gharpure SJ. Org. Lett. 2003; 5: 3883
- 23d Savela R, Leino R. Synthesis 2015; 47: 1749
- 23e Maddess ML, Cleator E, Morimoto M, Goodyear A, Dieguez-Vazquez A, Gibb A, Kirtley A, Christensen M, Song C, Peng F, Alam M, Keen SP, Oliver SF. Org. Process Res. Dev. 2024; 28: 2343
- 24a Hatakeyama S, Mori H, Kitano K, Yamada H, Nishizawa M. Tetrahedron Lett. 1994; 35: 4367
- 24b Wang C.-C, Lee J.-C, Luo S.-Y, Fan H.-F, Pai C.-L, Yang W.-C, Lu L.-D, Hung S.-C. Angew. Chem. Int. Ed. 2002; 41: 2360
- 24c Joseph AA, Verma VP, Liu X.-Y, Wu C.-H, Dhurandhare VM, Wang C.-C. Eur. J. Org. Chem. 2012; 744
- 24d Chen CW, Wang CC, Li XR, Witek H, Mong K.-KT. Org. Biomol. Chem. 2020; 18: 3135
- 25 Wada M, Nagayama S, Mizutani K, Hiroi R, Miyoshi N. Chem. Lett. 2002; 31: 248
- 26 Iwanami K, Yano K, Oriyama T. Chem. Lett. 2007; 36: 38
- 27 Gellert BA, Kahlcke N, Feurer M, Roth S. Chem. Eur. J. 2011; 17: 12203
- 28 Zhao C, Sojdak CA, Myint W, Seidel D. J. Am. Chem. Soc. 2017; 139: 10224
- 29 Petronilho A, Vivancos A, Albrecht M. Catal. Sci. Technol. 2017; 7: 5766
- 30 Pelosi A, Lanari D, Temperini A, Curini M, Rosati O. Adv. Synth. Catal. 2019; 361: 4527
- 31a Ren Y, Li M, Yang J, Peng J, Gu Y. Adv. Synth. Catal. 2011; 353: 3473
- 31b Prat D, Wells A, Hayler J, Sneddon H, McElroy CR, Abou-Shehadad S, Dunn PJ. Green Chem. 2016; 18: 288
- 32a Jia W, Xi Q, Liu T, Yang M, Chen Y, Yin D, Wang X. J. Org. Chem. 2019; 84: 5141
- 32b Wang D, Liu Y, Zhu W, Shen H, Liu H, Fu L. Chem. Lett. 2020; 49: 709
- 32c Chen Y, Deng T, Zhu S, Yin F, Zhu H. Tetrahedron 2024; 162: 134087
- 33a Fukuzumi S, Ohkubo K. J. Am. Chem. Soc. 2002; 124: 10270
- 33b Ohkubo K, Menon SC, Orita A, Otera J, Fukuzumi S. J. Org. Chem. 2003; 68: 4720
- 33c Gaffen JR, Bentley JN, Torres LC, Chu C, Baumgartner T, Caputo CB. Chem 2019; 5: 1567
- 34 Ouyang L, Xia Y, Miao R, Liao J, Luo R. Org. Biomol. Chem. 2022; 20: 2621
- 35a Sharma GV. M, Mahalingam AK. J. Org. Chem. 1999; 64: 8943
- 35b Sharma GV. M, Prasad TR, Mahalingam AK. Tetrahedron Lett. 2001; 42: 759
- 35c Kawada A, Yasuda K, Abe H, Harayama T. Chem. Pharm. Bull. 2002; 50: 380
- 36 Butyl 4-Methylbenzyl Ether (3aa)37; Typical Procedure TMDS (706.9 μL, 4 mmol) was added to a solution of butanol (1a; 274.5 μL, 3 mmol), p-tolualdehyde (2a; 235.6 μL, 2 mmol), and Sc(OTf)3 (2.5 mg, 0.005 mmol) in anhyd MeCN (10 mL). The resulting mixture was stirred at r.t. for 17 h, then concentrated in vacuo. The crude product was purified by flash chromatography [silica gel, hexane–DCM (93:7 to 40:60)] to give a colorless oil; yield: 340.7 mg (96%). 1H NMR (500 MHz, CDCl3): δ = 7.22 (d, J = 8.0 Hz, 2 H), 7.14 (d, J = 8.0 Hz, 2 H), 4.45 (s, 2 H), 3.44 (t, J = 6.6 Hz, 2 H), 2.33 (s, 3 H), 1.61–1.56 (m, 2 H), 1.42–1.35 (m, 2 H), 0.91 (t, J = 7.2 Hz, 3 H). 13C NMR (126 MHz, CDCl3): δ = 137.0, 135.6, 129.0, 127.7, 72.7, 70.0, 31.8, 21.1, 19.3, 13.9.
- 37 Sereda GA, Rajpara VB, Slaba RL. Tetrahedron 2007; 63: 8351
For discussions on the strength of Lewis acidity, see: