Subscribe to RSS
DOI: 10.1055/a-2591-9299
Regioselective Transformations of Unsaturated Systems Catalyzed by Low-Valent Nickel: Cycloaddition, Hydrosilylation, and Dicarbofunctionalization
This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (RS-2020-NR049543). G.H.K. is grateful for a postdoctoral fellowship supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (RS-2024-00452066). S.Y.H. also acknowledges the support by the Technology Innovation Program (RS-2024-00437259, development of additives for enhanced high-voltage stability and liquid electrolytes technology for application of mid-nickel cathode materials) funded by the Ministry of Trade, Industry and Energy (MOTIE, Korea). J.-U.R. acknowledges support from the UNIST Research Fund (1.130085.01).

Abstract
In this Account, we describe our recent research progress in the development of the functionalization of unsaturated substrates catalyzed by low-valent nickel. In particular, we discuss nickel-catalyzed azide–alkyne cycloaddition (NiAAC), [2 + 2 + 2] cycloaddition of diynes and nitriles, hydrosilylation of alkynes, and dicarbofunctionalization of 1,3-enynes. Moreover, we highlight our mechanistic studies aimed at elucidating catalytically active nickel intermediates, thereby contributing to the understanding and expansion of nickel-catalyzed synthetic methodologies.
1 Introduction
2 Nickel(0)-Catalyzed Cycloaddition Reactions
3 Nickel(I)-Catalyzed Hydrosilylation and Dicarbofunctionalization Reactions
4 Conclusion and Outlook
Key words
unsaturated systems - nickel - cycloaddition - hydrosilylation - dicarbofunctionalization - regioselectivity - reaction mechanismsPublication History
Received: 10 March 2025
Accepted after revision: 21 April 2025
Accepted Manuscript online:
21 April 2025
Article published online:
17 June 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Ritleng V, Sirlin C, Pfeffer M. Chem. Rev. 2002; 102: 1731
- 2 Metal-Catalyzed Cross-Coupling Reactions . de Meijere A, Diederich F. Wiley-VCH; Weinheim: 2004
- 3 Palladium in Organic Synthesis. In Topics in Organometallic Chemistry, Vol. 14. Tsuji J. Springer; Berlin: 2005
- 4 Modern Alkyne Chemistry: Catalytic and Atom-Economic Transformations. Trost BM, Li C.-J. Wiley-VCH; Weinheim: 2015
- 5 Liu C.-X, Yin S.-Y, Zhao F, Yang H, Feng Z, Gu Q, You S.-L. Chem. Rev. 2023; 123: 10079
- 6 Cobalt Catalysis in Organic Synthesis: Methods and Reactions. Hapke M, Hilt G. Wiley-VCH; Weinheim: 2020
- 7 Nickel Catalysis in Organic Synthesis: Methods and Reactions. Ogoshi S. Wiley-VCH; Weinheim: 2020
- 8 Dong K, Liu M, Xu X. Molecules 2022; 27: 3088
- 9 Lin C.-Y, Power PP. Chem. Soc. Rev. 2017; 46: 5347
- 10 Schultz JW, Fuchigami K, Zheng B, Rath NP, Mirica LM. J. Am. Chem. Soc. 2016; 138: 12928
- 11 Chernyshev VM, Ananikov VP. ACS Catal. 2022; 12: 1180
- 12 Riordan CG. Science 2015; 347: 1203
- 13 Hazari N, Melvin PR, Beromi MM. Nat. Rev. Chem. 2017; 1: 0025
- 14 Clevenger AL, Stolley RM, Aderibigbe J, Louie J. Chem. Rev. 2020; 120: 6124
- 15 Chatani N. Acc. Chem. Res. 2023; 56: 3053
- 16 Han F.-S. Chem. Soc. Rev. 2013; 42: 5270
- 17 Transition Metal Catalyzed Oxidative Cross-Coupling Reactions. Lei A. Springer; Berlin: 2019
- 18 Ananikov VP. ACS Catal. 2015; 5: 1964
- 19 Camasso NM, Sanford MS. Science 2015; 347: 1218
- 20 Ogoshi S, Ueta M, Oka M.-a, Kurosawa H. Chem. Commun. 2004; 2732
- 21 Louie J, Gibby JE, Farnworth MV, Tekavec TN. J. Am. Chem. Soc. 2002; 124: 15188
- 22 Staudaher ND, Stolley RM, Louie J. Chem. Commun. 2014; 50: 15577
- 23 Nett AJ, Cañellas S, Higuchi Y, Robo MT, Kochkodan JM, Haynes MT. II, Kampf JW, Montgomery J. ACS Catal. 2018; 8: 6606
- 24 Nattmann L, Saeb R, Nöthling N, Cornella J. Nat. Catal. 2020; 3: 6
- 25a Tran VT, Li Z.-Q, Apolinar O, Derosa J, Joannou MV, Wisniewski SR, Eastgate MD, Engle KM. Angew. Chem. Int. Ed. 2020; 59: 7409
- 25b Tran VT, Kim N, Rubel CZ, Wu X, Kang T, Jankins TC, Li Z.-Q, Joannou MV, Ayers S, Gembicky M, Bailey J, Sturgell EJ, Sanchez BB, Chen JS, Lin S, Eastgate MD, Wisniewski SR, Engle K. Angew. Chem. Int. Ed. 2023; 62: e202211794
- 26 He YL, Tao R, Zhu S. Synlett 2022; 33: 224
- 27 Dawson GA, Spielvogel EH, Diao T. Acc. Chem. Res. 2023; 56: 3640
- 28 Derosa J, Apolinar O, Kang T, Tran VT, Engle KM. Chem. Sci. 2020; 11: 4287
- 29 Bismuto A, Finkelstein P, Müller P, Morandi B. Helv. Chim. Acta 2021; 104: e2100177
- 30 Sakhapov IF, Gafurov ZN, Babaev VM, Kurmaz VA, Mukhametbareev RR, Rizvanov IK, Sinyashin OG, Yakhvarov DG. Russ. J. Electrochem. 2015; 51: 1061
- 31 Day CS, Renteria-Gomez A, Ton SJ, Gogoi AR, Gutierrez O, Martin R. Nat. Catal. 2023; 6: 244
- 32 Dawson GA, Lin Q, Neary MC, Diao T. J. Am. Chem. Soc. 2023; 145: 20551
- 33 Lin Q, Diao T. J. Am. Chem. Soc. 2019; 141: 17937
- 34 Lin Q, Fu Y, Liu P, Diao T. J. Am. Chem. Soc. 2021; 143: 14196
- 35 Somerville RJ, Odena C, Obst MF, Hazari N, Hopmann KH, Martin R. J. Am. Chem. Soc. 2020; 142: 10936
- 36 Ting SI, Williams WL, Doyle AG. J. Am. Chem. Soc. 2022; 144: 5575
- 37 Ju L, Lin Q, LiBretto NJ, Wagner CL, Hu CT, Miller JT, Diao T. J. Am. Chem. Soc. 2021; 143: 14458
- 38 Mohadjer Beromi M, Brudvig GW, Hazari N, Lant HM. C, Mercado BQ. Angew. Chem. Int. Ed. 2019; 58: 6094
- 39 Kim WG, Kang ME, Lee JB, Jeon MH, Lee S, Lee J, Choi B, Cal PM. S. D, Kang S, Kee J.-M, Bernardes GJ. L, Rohde J.-U, Choe W, Hong SY. J. Am. Chem. Soc. 2017; 139: 12121
- 40 Kim WG, Baek SY, Jeong SY, Nam D, Jeon JH, Choe W, Baik MH, Hong SY. Org. Biomol. Chem. 2020; 18: 3374
- 41 Cho IY, Kim WG, Jeon JH, Lee JW, Seo JK, Seo J, Hong SY. J. Org. Chem. 2021; 86: 9328
- 42 Lee C, Jeon JH, Lee S, Choe W, Kwak J, Seo S, Hong SY, Jung B. ACS Catal. 2024; 14: 5077
- 43 Jeon JH, Kim GH, Lee HS, Kim DH, Lee S, Choe W, Jung B, Rohde J.-U, Hong SY. ACS Catal. 2024; 14: 8996
- 44 Juríček M, Kouwer PH. J, Rowan AE. Chem. Commun. 2011; 47: 8740
- 45 Vala DP, Vala RM, Patel HM. ACS Omega 2022; 7: 36945
- 46 Meldal M, Tornøe CW. Chem. Rev. 2008; 108: 2952
- 47 Hein JE, Fokin VV. Chem. Soc. Rev. 2010; 39: 1302
- 48 Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. Angew. Chem. Int. Ed. 2002; 41: 2596
- 49 Tornøe CW, Christensen C, Meldal M. J. Org. Chem. 2002; 67: 3057
- 50 Zhang L, Chen XG, Xue P, Sun HH. Y, Williams ID, Sharpless KB, Fokin VV, Jia GC. J. Am. Chem. Soc. 2005; 127: 15998
- 51 Boren BC, Narayan S, Rasmussen LK, Zhang L, Zhao H, Lin Z, Jia G, Fokin VV. J. Am. Chem. Soc. 2008; 130: 8923
- 52 Johansson JR, Beke-Somfai T, Said Stålsmeden A, Kann N. Chem. Rev. 2016; 116: 14726
- 53 Kumar P, Prescher S, Louie J. Angew. Chem. Int. Ed. 2011; 50: 10694
- 54 Obligacion JV, Chirik PJ. Nat. Rev. Chem. 2018; 2: 15
- 55 de Almeida LD, Wang H, Junge K, Cui X, Beller M. Angew. Chem. Int. Ed. 2021; 60: 550
- 56 Cheng Z, Xing S, Guo J, Cheng B, Hu L.-F, Zhang X.-H, Lu Z. Chin. J. Chem. 2019; 37: 457
- 57 Guo J, Wang H, Xing S, Hong X, Lu Z. Chem 2019; 5: 881
- 58 Hu MY, Lian J, Sun W, Qiao TZ, Zhu SF. J. Am. Chem. Soc. 2019; 141: 4579
- 59 Chen WF, Song HB, Li JF, Cui CM. Angew. Chem. Int. Ed. 2020; 59: 2365
- 60 Wang G, Su X, Gao L, Liu X, Li G, Li S. Chem. Sci. 2021; 12: 10883
- 61 Banach Ł, Brykczyńska D, Gorczyński A, Wyrzykiewicz B, Skrodzki M, Pawluć P. Chem. Commun. 2022; 58: 13763
- 62 Cheng Z, Li M, Zhang X.-Y, Sun Y, Yu Q.-L, Zhang X.-H, Lu Z. Angew. Chem. Int. Ed. 2023; 62: e202215029
- 63 Lee C, Lee D, Hong SY, Jung B, Seo S. Front. Chem. 2024; 12: 1411140
- 64 Zhang X, Chung LW, Wu Y.-D. Acc. Chem. Res. 2016; 49: 1302
- 65 Terao J, Bando F, Kambe N. Chem. Commun. 2009; 7336
- 66 Ye C, Li Y, Zhu X, Hu S, Yuan D, Bao H. Chem. Sci. 2019; 10: 3632
- 67 Zhang K.-F, Bian K.-J, Li C, Sheng J, Li Y, Wang X.-S. Angew. Chem. Int. Ed. 2019; 58: 5069
- 68 Zhu X, Deng W, Chiou M.-F, Ye C, Jian W, Zeng Y, Jiao Y, Ge L, Li Y, Zhang X, Bao H. J. Am. Chem. Soc. 2019; 141: 548
- 69 Zeng Y, Chiou M.-F, Zhu X, Cao J, Lv D, Jian W, Li Y, Zhang X, Bao H. J. Am. Chem. Soc. 2020; 142: 18014
- 70 Chen Y, Wang JJ, Lu YX. Chem. Sci. 2021; 12: 11316
- 71 Chen Y, Zhu K, Huang Q, Lu Y. Chem. Sci. 2021; 12: 13564
- 72 Dong X.-Y, Zhan T.-Y, Jiang S.-P, Liu X.-D, Ye L, Li Z.-L, Gu Q.-S, Liu X.-Y. Angew. Chem. Int. Ed. 2021; 60: 2160
- 73 Song Y, Fu C, Ma S. ACS Catal. 2021; 11: 10007
- 74 Wang Q, Chen Y, Peng K, Li Y, Cheng L, Deng G.-J. Org. Lett. 2023; 25: 8889
- 75 Zhu C, Chen H, Yue H, Rueping M. Nat. Synth. 2023; 2: 1068
- 76 Du J, Liu A, Zhang W, Luo S, Yao H, He Y. ACS Catal. 2024; 14: 13940
- 77 Lei H, Wang B, Yang Y, Fan S, Wang S, Wei X. Org. Lett. 2024; 26: 7688