Subscribe to RSS
DOI: 10.1055/a-2595-1603
Organocatalyzed Glycosylation for the Stereoselective Synthesis of O/C-Glycosides
The authors gratefully acknowledge financial support by the Science and Engineering Research Board (SERB), DST, Govt. of India (Grant No. CRG/2022/003936). S. D. thanks to the Science and Engineering Research Board (SERB), DST, Govt. of India for the research fellowships.

Abstract
Oligosaccharides play a pivotal role in biological systems and support immune function due to their unique sugar structures. For a better understanding of the biochemical processes, it is essential to need pure and structurally well-defined oligosaccharides. Even though there has been significant progress in the synthesis of oligosaccharides, the efficient and stereoselective synthesis of glycosidic bonds through chemical glycosylation remains a challenging task for chemists. Organocatalysis is an exciting field in chemistry that utilizes small organic molecules as catalysts to accelerate chemical reactions under substoichiometric conditions. These catalysts offer advantages like environmentally friendly conditions, high selectivity, and efficiency for synthesizing complex molecules. In the last few years, organocatalyzed glycosylation has significantly progressed in carbohydrate chemistry particular to the stereoselective synthesis of oligosaccharides. This personal account describes the organocatalytic glycosylation methodologies developed by our group for activation of trichloroacetimidate donor and glycal substrates resulting in the specific formation of α- or β-glycosidic bonds.
1 Introduction
2 Trichloroacetimidate Donor
3 Glycals
4 Conclusion
Publication History
Received: 18 March 2025
Accepted after revision: 25 April 2025
Accepted Manuscript online:
25 April 2025
Article published online:
16 June 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Berkessel A, Gröger H. Asymmetric Organocatalysis: From Biomimetic Concepts to Applications in Asymmetric Synthesis. Wiley-VCH; Weinheim: 2005
- 1b List B. Asymmetric Organocatalysis. Springer; Berlin: 2009
- 1c MacMillan DW. C. Nature 2008; 455: 304
- 2 Burke AJ. Expert Opin. Drug Discovery 2023; 18: 37
- 3 Aukland MH, List B. Pure Appl. Chem. 2021; 93: 1371
- 4 Zamir R, Munir S, Gondal HY, Nisar M, Al-Hussain S A, Abbaskhan A, Cheema ZM, Zaki ME. A, Choudhary MI. Food Biosci. 2024; 62: 105095
- 5 Li P, Qi M, Hu H, Liu Q, Yang Q, Wang D, Guo F, Bligh SW. A, Wang Z, Yang L. RSC Adv. 2015; 5: 51701
- 6 Bokor É, Kun S, Goyard D, Toth M, Praly J.-P, Vidal S, Somsak LC. Chem. Rev. 2017; 117: 1687
- 7 Toshima K, Tatsuta K. Chem. Rev. 1993; 93: 1503
- 8a Zhang Z, Schreiner PR. Chem. Soc. Rev. 2009; 38: 1187
- 8b Dwivedi S, Thakur S, Sau A. Chem. Commun. 2025; 61: 4429
- 8c
Williams R,
Galan MC.
Eur. J. Org. Chem. 2017; 6247
- 8d Mukherjee MM, Ghosh R, Hanover JA. Front. Mol. Biosci. 2022; 9: 896187
- 9 Gallier F, Soter de Mariz e Miranda L. Org. Biomol. Chem. 2022; 20: 919
- 10 Madarász Á, Dósa Z, Varga S, Soós T, Csámpai A, Pápai I. ACS Catal. 2016; 6: 4379
- 11 Xu H, Zuend SJ, Woll MG, Tao Y, Jacobsen EN. Science 2010; 327: 986
- 12 Bradshaw GA, Colgan AC, Allen NP, Pongener I, Boland MB, Ortin Y, McGarrigle EM. Chem. Sci. 2019; 10: 508
- 13a Schreiner PR, Wittkopp A. Org. Lett. 2002; 4: 217
- 13b Schreiner PR. Chem. Soc. Rev. 2003; 32: 289
- 14a Zhang Z, Schreiner PR. Chem. Soc. Rev. 2009; 38: 1187
- 14b Zhang Z, Bao Z, Xing H. Org. Biomol. Chem. 2014; 12: 3151
- 15a Vera S, García-Urricelqui A, Mielgo A, Oiarbide M. Eur. J. Org Chem. 2023; 26: e202201254
- 15b Madarász Á, Dósa Z, Varga S, Soós T, Csámpai A, Pápai I. ACS Catal. 2016; 6: 4379
- 16 Geng Y, Kumar A, Faidallah HM, Albar HA, Mhkalid IA, Schmidt RR. Angew. Chem. Int. Ed. 2013; 52: 10089
- 17 Palo-Nieto C, Sau A, Williams R, Galan MC. J. Org. Chem. 2017; 82: 407
- 18 Kimura T, Eto T, Takahashi D, Toshima K. Org. Lett. 2016; 18: 3190
- 19 Medina S, Harper MJ, Balmond EI, Miranda S, Crisenza GE. M, Coe DM, McGarrigle EM, Galan MC. Org. Lett. 2016; 18: 4222
- 20 Yoshida K, Kanoko Y, Takao K. Asian J. Org. Chem. 2016; 5: 1230
- 21 Xu C, Loh CC. J. Nat. Commun. 2018; 9: 4057
- 22 Yadav RN, Hossain MF, Das A, Srivastava AK, Banik BK. Catal. Rev. 2024; 66: 1
- 23a Kobayashi Y, Nakatsuji Y, Li S, Tsuzuki S, Takemoto Y. Angew. Chem. Int. Ed. 2018; 57: 3646
- 23b Xiao K, Hu Y, Wan Y, Li X, Nie Q, Yan H, Wang L, Liao J, Liu D, Tu Y, Sun J, Codée JD. C, Zhang Q. Chem. Sci. 2022; 13: 1600
- 24 Geng Y, Kumar A, Faidallah HM, Albar HA, Mhkalid IA, Schmidt RR. Angew. Chem. Int. Ed. 2013; 52: 10089
- 25a Dubey A, Sangwana R, Mandal PK. Catal. Commun. 2019; 125: 123
- 25b Dubey A, Tiwari A, Mandal PK. Carbohydr. Res. 2020; 487: 107887
- 25c Tiwari A, Khanam A, Lal M, Mandal PK. Adv. Synth. Catal. 2024; 366: 3262
- 25d Dubey A, Tiwari A, Mandal PK. J. Org. Chem. 2021; 86: 8516
- 25e Tiwari A, Khanam A, Mandal PK. Carbohydr. Res. 2025; 552: 109470
- 26 Wang Q, An S, Deng Z, Zhu W, Huang Z, He G, Chen G. Nat. Catal. 2019; 2: 793
- 27 Bennett CS, Galan MC. Chem. Rev. 2018; 18: 7931
- 28 Huang Z, Chavda VP, Vora LK, Gajjar N, Apostolopoulos V, Shah N, Chen Z.-S. Front. Pharmacol. 2022; 13: 899633
- 29a Balmond EI, Coe DM, Galan MC, McGarrigle EM. Angew. Chem. Int. Ed. 2012; 51: 9152
- 29b Sau A, Palo-Nieto C, Galan MC. J. Org. Chem. 2019; 84: 2415
- 29c Ghosh T, Mukherji A, Kancharla PK. Org. Lett. 2019; 21: 3490