Subscribe to RSS
DOI: 10.1055/s-0043-1775038
Chiral-Bisphosphine-Catalyzed Asymmetric Staudinger/Aza-Wittig Reaction: Development, Mechanism Study, and Synthetic Application
We acknowledge the financial support from National Natural Science Foundation of China (21971140; 22271172), the Beijing Frontier Research Center for Biological Structure, and the Tsinghua-Toyota Joint Research Fund (20213930027).
Abstract
The enantioselective desymmetrization of 2,2-disubstituted cyclohexane-1,3-diones has been realized through an unprecedented chiral-bisphosphine-catalyzed asymmetric Staudinger/aza-Wittig reaction. The key to this work’s success lies in utilizing an electronically rich and sterically hindered chiral bisphosphine reagent, namely DuanPhos, as a catalyst. In addition, a unique reductive system was established to address the requisite PIII/PV = O redox cycle. The mechanism of the chiral-bisphosphine-catalyzed asymmetric Staudinger/aza-Wittig reaction has been elucidated through combined computational and experimental studies. Several crinine-type amaryllidaceae alkaloids have been synthesized concisely, hinging on the newly developed methodology.
Key words
enantioselective desymmetrization - Staudinger/aza-Wittig reaction - chiral bisphosphine - total synthesis - amaryllidaceae alkaloidsPublication History
Received: 25 June 2024
Accepted after revision: 24 July 2024
Article published online:
22 August 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States.
- 1b Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States.
- 2 Mahdavi M, Pedrood K, Montazer MN, Larijani B. Synthesis 2021; 53: 2342
- 3a Zeng XP, Cao ZY, Wang YH, Zhou F, Zhou J. Chem. Rev. 2016; 116: 7330
- 3b Borissov A, Davies TQ, Ellis SR, Fleming TA, Richardson MS. W, Dixon DJ. Chem. Soc. Rev. 2016; 45: 5474
- 3c Xu Y, Zhai TY, Xu Z, Ye LW. Trends Chem. 2022; 4: 191
- 3d Chegondi R, Patel SM, Maurya S, Donthoju A. Asian J. Org. Chem. 2021; 10: 1267
- 3e Pengwei XuP. W, Zhou F, Zhu L, Zhou J. Nat. Synth. 2023; 2: 1020
- 4 Lertpibulpanya D, Marsden SP. Rodriguez-Garcia I, Kilner CA. Angew. Chem. Int. Ed. 2006; 45: 5000
- 5a Cai L, Zhang K, Chen S, Lepage RJ, Houk KN, Krenske EH, Kwon O. J. Am. Chem. Soc. 2019; 141: 9537
- 5b Zhang K, Cai L, Yang Z, Houk KN, Kwon O. Chem. Sci. 2018; 9: 1867
- 5c Xie C, Kim J, Mai BK, Cao S, Ye R, Wang X.-Y, Liu P, Kwon O. J. Am. Chem. Soc. 2022; 144: 21318
- 6 Moser D, Jana K, Sparr C. Angew. Chem. Int. Ed. 2023; 62: e202309053
- 7a Ren WW, Bian YC, Zhang ZY, Shang H, Zhang PT, Chen YJ, Yang Z, Luo TP, Tang YF. Angew. Chem. Int. Ed. 2012; 51: 6984
- 7b Fu JK, Shang H, Wang ZF, Chang L, Shao WB, Yang Z, Tang YF. Angew. Chem. Int. Ed. 2013; 52: 4198
- 7c Lei XQ, Li YH, Lai Y, Hu SK, Qi C, Wang GL, Tang YF. Angew. Chem. Int. Ed. 2021; 60: 4221
- 7d Guo Z, Bao RY, Li YH, Li YS, Zhang JY, Tang YF. Angew. Chem. Int. Ed. 2021; 60: 14545
- 8 Yang H, Zhang J, Zhang S, Xue Z, Hu S, Chen Y, Tang Y. J. Am. Chem. Soc. 2024; 146: 14136
- 9 Zhang J, Kong WY, Guo W, Tantillo DJ, Tang Y. J. Am. Chem. Soc. 2024; 146: 13983
- 10a Kirk AM, O'Brien CJ, Krenske EH. Chem. Commun. 2020; 56: 1227
- 10b Fianchini M, O’Brien CJ, Chass GA. J. Org. Chem. 2018; 84: 10579
- 10c van Kalkeren HA, te Grotenhuis C, Haasjes FS, Hommersom CR. A, Rutjes FP. J. T, van Delft FL. Eur. J. Org. Chem. 2013; 7059
- 10d van Kalkeren HA, van Delft FL, Rutjes FP. ChemSusChem 2013; 6: 1615
- 10e Lipshultz JM, Li G, Radosevich AT. J. Am. Chem. Soc. 2021; 143: 1699
- 10f Longwitz L, Werner T. Pure Appl. Chem. 2019; 91: 95
- 10g Huang Y, Cai W. Chin. J. Chem. 2021; 41: 3903
- 11 Liu D, Zhang X. Eur. J. Org. Chem. 2005; 646
- 12a Xu G, Senanayake CH, Tang W. Acc. Chem. Res. 2019; 52: 1101
- 12b Zhou JS. In Comprehensive Coordination Chemistry III . Constable E, Parkin G, Que L. Elsevier; Amsterdam: 2021: 32
- 13a Guo H, Fan YC, Sun Z, Wu Y, Kwon O. Chem. Rev. 2018; 118: 10049
- 13b Xie C, Smaligo AJ, Song XR, Kwon O. ACS Cent. Sci. 2021; 7: 536
- 13c Khong S, Venkatesh T, Kwon O. Asian J. Org. Chem. 2021; 10: 2699
- 14a Li Y, Lu LQ, Das S, Pisiewicz S, Junge K, Beller M. J. Am. Chem. Soc. 2012; 134: 18325
- 14b Lorton C, Castanheiro T, Voituriez A. J. Am. Chem. Soc. 2019; 141: 10142
- 14c Adler MJ, D’Amaral MC, Andrews KG, Denton R. Synthesis 2023; 55: 3209
- 15 Fourmy K, Voituriez A. Org. Lett. 2015; 17: 1537
- 16a Boezio AA, Pytkowicz J, Côté A, Charette AB. J. Am. Chem. Soc. 2003; 125: 14260
- 16b Bonnaventure I, Charette AB. J. Org. Chem. 2008; 73: 6330
- 18 Gao S, Tu YQ, Song Z, Wang A, Fan X, Jiang Y. J. Org. Chem. 2005; 70: 6523
- 19 Lan P, Banwell MG, Willis AC. J. Org. Chem. 2018; 83: 8493
- 20a Wildman WC. J. Am. Chem. Soc. 1958; 80: 2567
- 20b Hansen T, Anwar H. Synlett 2008; 2681
- 20c Bogle KM, Hirst DJ, Dixon DJ. Org. Lett. 2010; 12: 1252
- 20d Zuo XD, Guo SM, Yang R, Xie JH, Zhou QL. Chem. Sci. 2017; 8: 6202
- 21a Sandager M, Nielsen ND, Stafford GI, van Staden J, Jäger AK. J. Ethnopharmacol. 2005; 98: 367
- 21b Tallini LR, Andrade JP, Kaiser M, Viladomat F, Nair JJ, Zuanazzi JA. S, Bastida J. Molecules 2017; 22: 1437
- 21c Georgiev V, Ivanov I, Pavlov A. Molecules 2020; 25: 4670
- 22a Wei MX, Wang CT, Du JY, Qu H, Yin PR, Bao X, Ma XY, Zhao XH, Zhang GB, Fan CA. Chem. Asian J. 2013; 8: 1966
- 22b Bohno M, Imase H, Chida N. Chem. Commun. 2004; 1086
- 22c Bohno M, Sugie K, Imase H, Yusof YB, Oishi T, Chida N. Tetrahedron 2007; 63: 6977
- 22d Boit H.-G, Ehmke H. Chem. Ber. 1957; 90: 369
New addresses:
For leading reviews, see:
For selected examples, see