Subscribe to RSS
DOI: 10.1055/s-0043-1775452
Brønsted Acid Ionic-Liquid-Catalyzed Facile One-Pot Synthesis of 1-[(1,3-Benzothiazol-2-ylamino)methyl]-2-naphthols in a Green Medium
The authors thank the Science and Engineering Research Board (SERB), India for the funding provided through YSS/2015/000450, and VIT for providing VIT SEED Grant RGEMS Fund grants (SG20220031, SG20240023) for carrying out this research work.

Abstract
A rapid, simple, and efficient one-pot protocol has been developed for the sustainable synthesis of 1-[(1,3-benzothiazol-2-ylamino)methyl]-2-naphthols from substituted 2-aminobenzothiazoles, aryl aldehydes, and 2-naphthol by using 5 mol% of a Bronsted acid ionic liquid as a catalyst. This method offers several advantages such as a broad substrate scope, short reaction time, one-pot procedure, benign medium, and a high yield using a low catalyst loading. Moreover, the ionic liquid catalyst can be recycled up to three times without a noteworthy loss in catalytic activity.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0043-1775452.
- Supporting Information
Publication History
Received: 06 December 2024
Accepted after revision: 04 February 2025
Article published online:
17 March 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References and Notes
- 1 Nabinia N, Shirini F, Tajik H, Mashhadinezhad M, Langarudi MS. N. J. Iran. Chem. Soc. 2018; 15: 2147
- 2 Catalano A, Carocci A, Defrenza I, Muraglia M, Carrieri A, Van Bambeke F, Rosato A, Corbo F, Franchini C. Eur. J. Med. Chem. 2013; 64: 357
- 3 El-Shorbagi A.-N, Sakai S, el-Gendy MA, Omar N, Farag HH. Chem. Pharm. Bull. (Tokyo) 1989; 37: 2971
- 4 Shi D.-F, Bradshaw TD, Wrigley S, McCall CJ, Lelieveld P, Fichtner I, Stevens MF. G. J. Med. Chem. 1996; 39: 3375
- 5 Hutchinson I, Chua M.-S, Browne HL, Trapani V, Bradshaw TD, Westwell AD, Stevens MF. G. J. Med. Chem. 2001; 44: 1446
- 6 Chopade RS, Bahekar RH, Khedekar PB, Bhusari KP, Ram Rao AR. Arch. Pharm. 2002; 335: 381
- 7 Palkar M, Noolvi M, Sankangoud R, Maddi V, Gadad A, Nargund LV. G. Arch. Pharm. 2010; 343: 353
- 8 Iftikhar R, Kamran M, Iftikhar A, Parveen S, Naeem N, Jamil N. Mol. Diversity 2023; 27: 543
- 9 Sahu PK, Sahu PK, Thavaselvam D, Alafeefy AM, Agarwal DD. Med. Chem. Res. 2015; 24: 725
- 10 Dandekar SN, Lotlikar OA, Ramana MM. V, Rathod SV. Russ. J. Bioorg.. Chem. 2021; 47: 874
- 11 Yellapurkar I, Shaikh S, Pavale G, Bhabal S, Ramana MM. V. Res. Chem. Intermed. 2021; 47: 4067
- 12 Smith PW, Sollis SL, Howes PD, Cherry PC, Starkey ID, Cobley KN, Weston H, Scicinski J, Merritt A, Whittington A, Wyatt P, Taylor N, Green D, Bethell R, Madar S, Fenton RJ, Morley PJ, Pateman T, Beresford A. J. Med. Chem. 1998; 41: 787
- 13 Martínez-Grau A, Marco JL. Bioorg. Med. Chem. Lett. 1997; 7: 3165
- 14 Das J, Chen P, Norris D, Padmanabha R, Lin J, Moquin RV, Shen Z, Cook LS, Doweyko AM, Pitt S, Pang S, Shen DR, Fang Q, de Fex HF, McIntyre KW, Shuster DJ, Gillooly KM, Behnia K, Schieven GL, Wityak J, Barrish JC. J. Med. Chem. 2006; 49: 6819
- 15 Laine L, Kivitz AJ, Bello AE, Grahn AY, Schiff MH, Taha AS. Am. J. Gastroenterol. 2012; 107: 379
- 16 DeBattista C, Solvason HB, Breen JA. H, Schatzberg AF. J. Clin. Psychopharmacol. 2000; 20: 274
- 17 Shaabani A, Rahmati A, Farhangi E. Tetrahedron Lett. 2007; 48: 7291
- 18 Kumar A, Rao MS, Rao VK. Aust. J. Chem. 2010; 63: 1538
- 19 Ohanian A, Javanshir S, Heravi MM, Bamoharram FF. In Proc. 13th Int. Electronic Conf. Synthetic Organic Chemistry, Nov 1–30, 2009. MDPI; Basel: 2009: 197
- 20 Sahu PK, Sahu PK, Agarwal DD. RSC Adv. 2014; 4: 40414
- 21 Welton T. Coord. Chem. Rev. 2004; 248: 2459
- 22 Chiappe C, Pomelli CS. Eur. J. Org. Chem. 2014; 6120
- 23 Abbasi M. RSC Adv. 2015; 5: 67405
- 24 Vander Hoogerstraete T, Binnemans K. Green Chem. 2014; 16: 1594
- 25 Raiguel S, Dehaen W, Binnemans K. Green Chem. 2020; 22: 5225
- 26 Hawker RR, Haines RS, Harper JB. Org. Biomol. Chem. 2018; 16: 3453
- 27 Bahadori M, Tangestaninejad S, Bertmer M, Moghadam M, Mirkhani V, Mohammadpoor-Baltork I, Kardanpour R, Zadehahmadi F. ACS Sustainable Chem. Eng. 2019; 7: 3962
- 28 Pasuparthy SD, Maiti B. ACS Omega 2022; 7: 39147
- 29 Madivalappa Davanagere P, Maiti B. ACS Omega 2021; 6: 26035
- 30 Prabhakara MD, Maiti B. Res. Chem. Intermed. 2020; 46: 2381
- 31 Deepak Pasuparthy S, Joseph S, Somkuwar P, S. K AK, Maiti B. Asian J. Org. Chem. 2023; 12: e202300313
- 32 Pasuparthy SD, Maiti B. Tetrahedron 2024; 153: 133845
- 33 Mohurle S, Pasuparthy SD, Talamarla D, Kali V, Maiti B. J. Heterocycl. Chem. 2023; 60: 1545
- 34 Rahimizadeh F, Mazloumi M, Shirini F. RSC Adv. 2024; 14: 13452
- 35 1-[(1,3-Benzothiazol-2-ylamino)(phenyl)methyl]-2-naphthol (7a); Typical Procedure A dried 25-mL round-bottomed flask was successively charged with 2-aminobenzothiazole (4a; 1 equiv), benzaldehyde (5a; 1 equiv), 2-naphthol (6; 1 equiv), and [BCMIM][Cl] (3) in EtOH (5 mL). The mixture was then heated at 80 °C for 15 min (5 mol%) until the reaction was complete (TLC). The solid precipitate was collected by filtration, washed with Et2O and hexane, and vacuum dried to give a white solid; yield: 95%; mp 200–201 °C. FTIR (ATR): 3388, 1627, 1590, 1530, 1438, 1330, 1272, 1200, 1046, 1027, 942, 837, 814, 748, 696, 612, 557, 494, 424 cm–1. 1H NMR (400 MHz, DMSO-d 6): δ = 10.15 (s, 1 H), 8.80 (d, J = 7.2 Hz, 1 H), 7.81 (dd, J = 19.7, 12.3 Hz, 3 H), 7.67 (d, J = 7.6 Hz, 1 H), 7.34 (dd, J = 17.1, 7.4 Hz, 3 H), 7.30–7.13 (m, 8 H), 7.01 (t, J = 7.6 Hz, 1 H). 13C NMR (100 MHz, DMSO-d 6): δ = 166.77, 153.62, 152.54, 142.94, 132.57, 131.21, 130.05, 129.03, 128.59, 126.67, 126.49, 125.93, 122.90, 122.90, 121.49, 121.37, 119.12, 118.81, 118.56, 53.51.