Diabetologie und Stoffwechsel 2019; 14(02): 109-123
DOI: 10.1055/s-0044-101862
CME-Fortbildung
© Georg Thieme Verlag KG Stuttgart · New York

Labordiagnostik bei Diabetes mellitus

Laboratory management of diabetes mellitus
Sebastian Hörber
,
Erwin Schleicher
,
Andreas Peter
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
16. April 2019 (online)

Abstract

Laboratory parameters are essential for diagnosis, prognosis and therapy control of diabetes mellitus. Diabetes-specific parameters including glucose, glycated hemoglobin (HbA1c), C-peptide and autoantibodies against beta cell epitopes as well as parameters of lipid metabolism and renal function should be taken into account. The precise and reliable determination of these parameters in accordance with the guidelines of the German Federal Medical Council for the determination of laboratory diagnostics is fundamental for the correct classification and evaluation of the measurement results. For this, important pre-analytical and analytical limitations must be considered.

Laborparameter spielen eine zentrale Rolle in der Diagnose, Prognose und Therapiekontrolle des Diabetes mellitus. Dabei sollten auch Parameter des Lipidstoffwechsels und der Nierenfunktion berücksichtigt werden. Die genaue und zuverlässige Bestimmung der Parameter ist für die Einordnung der Messergebnisse entscheidend. Dabei sind die Vorgaben der „Rili-BÄK“ einzuhalten sowie wichtige präanalytische und analytische Limitationen zu beachten.

 
  • Literatur

  • 1 American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2018. Diabetes Care 2018; 41: S13-S27 . doi:10.2337/dc18-S002
  • 2 Bundesärztekammer. Richtlinie zur Qualitätssicherung laboratoriumsmedizinischer Untersuchungen. Dtsch Arztebl 2008; 105: A341-A355
  • 3 Deutsche Diabetes Gesellschaft. Stellungnahme der Kommission Labordiagnostik in der Diabetologie (KLD) zum Wert und Sinn der Minimal Difference (MD) als Beurteilungskriterium für die laboranalytische Messqualität. 2017 Im Internet: http://www.deutsche-diabetes-gesellschaft.de/fileadmin/Redakteur/Stellungnahmen/2017/DDG_Stellungnahme_MD.pdf ; Stand: 20.03.2019
  • 4 Pickup JC, Freeman SC, Sutton AJ. Glycaemic control in type 1 diabetes during real time continuous glucose monitoring compared with self monitoring of blood glucose: meta-analysis of randomised controlled trials using individual patient data. BMJ 2011; 343: d3805 . doi:10.1136/bmj.d3805
  • 5 Choudhary P, Ramasamy S, Green L. et al. Real-time continuous glucose monitoring significantly reduces severe hypoglycemia in hypoglycemia-unaware patients with type 1 diabetes. Diabetes Care 2013; 36: 4160-4162 . doi:10.2337/dc13-0939
  • 6 Nauck M, Petersmann A, Müller-Wieland D. et al. Definition, Klassifikation und Diagnostik des Diabetes mellitus. Diabetologie 2017; 12 (Suppl. 02) S94-S100
  • 7 Gambino R, Piscitelli J, Ackattupathil TA. et al. Acidification of blood is superior to sodium fluoride alone as an inhibitor of glycolysis. Clin Chem 2009; 55: 1019-1021 . doi:10.1373/clinchem.2008.121707
  • 8 Gambino R. Sodium fluoride: an ineffective inhibitor of glycolysis. Ann Clin Biochem 2013; 50: 3-5 . doi:10.1258/acb.2012.012135
  • 9 Sacks DB, Arnold M, Bakris GL. et al. Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus. Clin Chem 2011; 57: e1-e47 . doi:10.1373/clinchem.2010.161596
  • 10 Winter T, Hannemann A, Suchsland J. et al. Long-term stability of glucose: glycolysis inhibitor vs. gel barrier tubes. Clin Chem Lab Med 2018; 56: 1251-1258 . doi:10.1515/cclm-2017-0860
  • 11 Petersmann A, Nauck M, Muller-Wieland D. et al. Definition, classification and diagnosis of diabetes mellitus. Exp Clin Endocrinol Diabetes 2018; 126: 406-410 . doi:10.1055/a-0584-6223
  • 12 Kleinwechter H. Update gestational diabetes – the new guidelines. MMW Fortschr Med 2011; 153: 44-47
  • 13 Nathan DM, Turgeon H, Regan S. Relationship between glycated haemoglobin levels and mean glucose levels over time. Diabetologia 2007; 50: 2239-2244 . doi:10.1007/s00125-007-0803-0
  • 14 UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998; 352: 837-853
  • 15 EurA1c Trial Group. EurA1c: The European HbA1c Trial to Investigate the Performance of HbA1c Assays in 2166 Laboratories across 17 Countries and 24 Manufacturers by Use of the IFCC Model for Quality Targets. Clin Chem 2018; 64: 1183-1192 . doi:10.1373/clinchem.2018.288795
  • 16 Kaiser P, Spannagl M, van Campenhout C. et al. HbA1c: EQA in Germany, Belgium and the Netherlands using fresh whole blood samples with target values assigned with the IFCC reference system. Clin Chem Lab Med 2016; 54: 1769-1775 . doi:10.1515/cclm-2016-0123
  • 17 Dagogo-Jack S. Pitfalls in the use of HbA(1)(c) as a diagnostic test: the ethnic conundrum. Nat Rev Endocrinol 2010; 6: 589-593 . doi:10.1038/nrendo.2010.126
  • 18 Peter A, Fritsche A, Stefan N. et al. Diagnostic value of hemoglobin A1c for type 2 diabetes mellitus in a population at risk. Exp Clin Endocrinol Diabetes 2011; 119: 234-237 . doi:10.1055/s-0030-1270440
  • 19 Selvin E, Warren B, He X. et al. Establishment of community-based reference intervals for fructosamine, glycated albumin, and 1,5-anhydroglucitol. Clin Chem 2018; 64: 843-850 . doi:10.1373/clinchem.2017.285742
  • 20 Selvin E, Rawlings AM, Grams M. et al. Fructosamine and glycated albumin for risk stratification and prediction of incident diabetes and microvascular complications: a prospective cohort analysis of the Atherosclerosis Risk in Communities (ARIC) study. Lancet Diabetes Endocrinol 2014; 2: 279-288 . doi:10.1016/S2213-8587(13)70199-2
  • 21 Kohzuma T, Yamamoto T, Uematsu Y. et al. Basic performance of an enzymatic method for glycated albumin and reference range determination. J Diabetes Sci Technol 2011; 5: 1455-1462 . doi:10.1177/193229681100500619
  • 22 Koga M, Matsumoto S, Saito H. et al. Body mass index negatively influences glycated albumin, but not glycated hemoglobin, in diabetic patients. Endocr J 2006; 53: 387-391
  • 23 Kishimoto M, Yamasaki Y, Kubota M. et al. 1,5-anhydro-D-glucitol evaluates daily glycemic excursions in well-controlled NIDDM. Diabetes Care 1995; 18: 1156-1159
  • 24 Kim MJ, Jung HS, Hwang-Bo Y. et al. Evaluation of 1,5-anhydroglucitol as a marker for glycemic variability in patients with type 2 diabetes mellitus. Acta Diabetol 2013; 50: 505-510 . doi:10.1007/s00592-011-0302-0
  • 25 Balis DA, Tong C, Meininger G. Effect of canagliflozin, a sodium-glucose cotransporter 2 inhibitor, on measurement of serum 1,5-anhydroglucitol. J Diabetes 2014; 6: 378-380 . doi:10.1111/1753-0407.12116
  • 26 Staten MA, Stern MP, Miller WG. et al. Insulin assay standardization: leading to measures of insulin sensitivity and secretion for practical clinical care. Diabetes Care 2010; 33: 205-206 . doi:10.2337/dc09-1206
  • 27 Little RR, Wielgosz RI, Josephs R. et al. Implementing a reference measurement system for C-peptide: successes and lessons learned. Clin Chem 2017; 63: 1447-1456 . doi:10.1373/clinchem.2016.269274
  • 28 Bingley PJ. Clinical applications of diabetes antibody testing. J Clin Endocrinol Metab 2010; 95: 25-33 . doi:10.1210/jc.2009-1365
  • 29 Achenbach P, Schlosser M, Williams AJ. et al. Combined testing of antibody titer and affinity improves insulin autoantibody measurement: Diabetes Antibody Standardization Program. Clin Immunol 2007; 122: 85-90 . doi:10.1016/j.clim.2006.09.004
  • 30 Fajans SS, Bell GI. MODY: history, genetics, pathophysiology, and clinical decision making. Diabetes Care 2011; 34: 1878-1884 . doi:10.2337/dc11-0035
  • 31 Merker L, Ebert T, Guthoff M. et al. Nephropathie bei Diabetes. Diabetologie 2018; 13 (Suppl. 02) S217-S221 . doi:10.1055/a-0598-0566
  • 32 Catapano AL, Graham I, De Backer G. et al. 2016 ESC/EAS Guidelines for the Management of Dyslipidaemias. Eur Heart J 2016; 37: 2999-3058 . doi:10.1093/eurheartj/ehw272
  • 33 Nordestgaard BG, Langsted A, Mora S. et al. Fasting is not routinely required for determination of a lipid profile: clinical and laboratory implications including flagging at desirable concentration cutpoints – a joint consensus statement from the European Atherosclerosis Society and European Federation of Clinical Chemistry and Laboratory Medicine. Clin Chem 2016; 62: 930-946 . doi:10.1373/clinchem.2016.258897
  • 34 Nordestgaard BG, Langsted A, Mora S. et al. Fasting is not routinely required for determination of a lipid profile: clinical and laboratory implications including flagging at desirable concentration cut-points – a joint consensus statement from the European Atherosclerosis Society and European Federation of Clinical Chemistry and Laboratory Medicine. Eur Heart J 2016; 37: 1944-1958 . doi:10.1093/eurheartj/ehw152
  • 35 Levey AS, Stevens LA, Schmid CH. et al. A new equation to estimate glomerular filtration rate. Ann Intern Med 2009; 150: 604-612
  • 36 Levey AS, Coresh J, Greene T. et al. Expressing the Modification of Diet in Renal Disease Study equation for estimating glomerular filtration rate with standardized serum creatinine values. Clin Chem 2007; 53: 766-772 . doi:10.1373/clinchem.2006.077180
  • 37 Larsson A, Malm J, Grubb A. et al. Calculation of glomerular filtration rate expressed in mL/min from plasma cystatin C values in mg/L. Scand J Clin Lab Invest 2004; 64: 25-30
  • 38 Diabetes, Control Complications Trial Research. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993; DOI: 10.1056/NEJM199309303291401.
  • 39 Hörber S, Achenbach P, Schleicher E. et al. Harmonization of immunoassays for biomarkers in diabetes mellitus. Biotechnol Adv 2019 Feb 23. pii: S0734-9750(19)30034-5. DOI: 10.1016/j.biotechadv.2019.02.015 [Epub ahead of print]