Subscribe to RSS
DOI: 10.1055/s-2006-950441
Efficient Syntheses of Mollugin
Publication History
Publication Date:
08 September 2006 (online)
Abstract
Two different strategies are presented to synthesize mollugin, based upon a close investigation of possible natural precursors. The best total synthesis of mollugin, a natural product isolated from rubiaceous herbs, is achieved in an overall yield of 61% starting from 1,4-dihydroxynaphthalene-2-carboxylic acid. The key reaction is the prenylation and spontaneous pyran ring formation. Subsequent oxidation of the intermediate 3,4-dihydromollugin with DDQ afforded mollugin.
Key words
quinones - natural products - oxidations
- 1
Itokawa H.Mihara K.Takeya K. Chem. Pharm. Bull. 1983, 31: 2353 -
2a
Ho L.-K.Don M.-J.Chen H.-C.Yeh S.-F.Chen J.-M. J. Nat. Prod. 1996, 59: 330 -
2b
Itokawa H.Takeya K.Mori N.Sonobe T.Mihashi S.Hamanaka T. Chem. Pharm. Bull. 1986, 34: 3762 - 3
Kawasaki Y.Goda Y.Yoshishira K. Chem. Pharm. Bull. 1992, 40: 1504 - 4
Chung M.-L.Jou S.-J.Cheng T.-H.Lin C.-N. J. Nat. Prod. 1994, 57: 313 -
5a
Gonzalez AG.Barroso JT.Cardona RJ.Medina JM.Rodriguez L. An. Quim. 1977, 73: 538 -
5b
Itokawa H.Qiao YF.Takeya K. Phytochemistry 1989, 28: 3465 -
5c
Itokawa H.Qiao YF.Takeya K. Phytochemistry 1991, 30: 637 -
5d
Hua HM.Wang SX.Wu LJ.Li X.Zhu TR. Acta Pharm. Sinica 1992, 27: 279 -
5e
Kuo S.-C.Chen P.-R.Lee S.-W.Chen Z.-T. J. Chin. Chem. Soc. (Taipei) 1995, 42: 869 -
5f
Inoue K.Shiobara Y.Naynshiro H.Inouye H.Wilson G.Zenk MH. Phytochemistry 1984, 23: 307 -
6a
Wanyoike GN.Chhabra SC.Lang’at-Thoruwa CC.Omar SA. J. Ethnopharmacol. 2004, 90: 129 -
6b
Cos P.Hermans N.De Bruyne T.Apers S.Sindambiwe JP.Vanden Berghe D.Pieters L.Vlietinck AJ. J. Ethnopharmacol. 2002, 79: 155 -
6c
Van Puyvelde L.El Hady S.De Kimpe N.Feneau-Dupont J.Declercq JP. J. Nat. Prod. 1998, 61: 1020 -
6d
Hari L.De Buyck L.De Pooter HL. Phytochemistry 1991, 30: 172 -
6e
Chabra SC.Mahunnah RLA.Mshiu EN. J. Ethnopharmacol. 1991, 33: 143 - 7
Schildknecht H.Straub F. Liebigs Ann. Chem. 1976, 1307 - 8
Heide L.Leistner E. J. Chem. Soc., Chem. Commun. 1981, 334 - 9
Ho L.-K.Yu H.-J.Ho C.-T.Don M.-J. J. Chin. Chem. Soc. 2001, 48: 77 - 10
Claessens S.Kesteleyn B.Nguyen VT.De Kimpe N. Tetrahedron 2006, 62: 8419 - 11
Giles RGF.Green IR.Hugo VI.Mitchell PRK.Yorke SC. J. Chem. Soc., Perkin Trans. 1 1983, 2309 -
12a
Khanna RN.Sharma PK.Thomson RH. J. Chem. Soc., Perkin Trans. 1 1987, 1821 -
12b
Nicolaou KC.Sasmal PK.Xu H. J. Am. Chem. Soc. 2004, 126: 5493 - 13
Wipf P.Weiner WS. J. Org. Chem. 1999, 64: 5321 - 14
Lumb JP.Trauner D. Org. Lett. 2005, 7: 5865 - 15
Naruta Y.Uno H.Maruyama K. J. Chem. Soc., Chem. Commun. 1981, 1277 - 16
Naruta Y. J. Org. Chem. 1980, 45: 4097 - 17
Jacobsen N.Torsell K. Acta Chem. Scand. 1973, 27: 3211 - 18
Schildknecht H.Straub F. Liebigs Ann. Chem. 1976, 1295
References and Notes
3-Bromomollugin 7: IR (KBr): 1650 cm-1 (C=O). 1H NMR (CDCl3, 300 MHz): δ = 1.59 (6 H, s, 2 × CH3), 4.04 (3 H, s, OCH3), 7.54 (1 H, ddd, J = 8.2, 6.9, 1.4 Hz, CH-8 or CH-9), 7.56 (1 H, s, CH), 7.63 (1 H, ddd, J = 8.2, 6.9, 1.4 Hz, CH-8 or CH-9), 8.13 (1 H, ddd, J = 8.2, 1.4, 0.8 Hz, CH-7), 8.37 (1 H, ddd, J = 8.2, 1.4, 0.8 Hz, CH-10), 12.27 (1 H, s, OH). 13C NMR (CDCl3, 75 MHz): δ = 25.82 (2 × CH3), 52.62 (OMe), 78.73 (=CBr), 101.24 (Cquat), 113.15 (Cquat), 121.85 (CH-7), 123.80 (Cquat), 124.29 (CH-10), 125.25 (Cquat), 125.31 (=CH), 126.73 (CH-8 or CH-9), 128.81 (Cquat), 129.77 (CH-8 or CH-9), 140.32 (Cquat), 157.27 (Cquat), 172.20 (C=O). MS (ES+): m/z (%) = 362/364 [M]+(100).