Synlett 2008(15): 2257-2262  
DOI: 10.1055/s-2008-1078277
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

K-10 Clay-Catalyzed Enol-Driven Decarboxylative Ring-Transformation Approach to Dihydro- and Tetrahydroquinolines from Carbohydrates

Lal Dhar Singh Yadav*, Chhama Awasthi, Vijai Kumar Rai, Ankita Rai
Green Synthesis Lab, Department of Chemistry, University of Allahabad, Allahabad 211002, Uttar Pradesh, India
Fax: +91(532)2460533; e-Mail: ldsyadav@hotmail.com;
Further Information

Publication History

Received 1 May 2008
Publication Date:
21 August 2008 (online)

Abstract

An original synthetic approach to 4-polyhydroxyal­kylquinolines using unprotected d-glucose/d-xylose as biorenewable resources is reported. The synthetic protocol involves enol-driven Michael-type addition of cyclic ketones to aldose-derived 1,3-oxazin-2-ones followed by decarboxylative ring transformation to yield various novel 5,6-dihydro-/5,6,7,8-tetrahydro-4-polyhydroxyalkylquinolines and their 5-, 6-, or 8-one analogues. This is a one-pot montmorillonite K-10 clay-catalyzed process proceeding under solvent-free microwave irradiation conditions.

    References and Notes

  • 1a Van Straten NCR. Van Berkel THJ. Demont DR. Karstens W.-JF. Merkx R. Oosterom J. Schulz J. Van Someren RG. Timmers CM. van Zandvoort PM. J. Med. Chem.  2005,  48:  1697 
  • 1b Gaillard S. Papamicael C. Marsais F. Dupas G. Levacher V. Synlett  2005,  441 
  • 1c Foucaud B. Laube B. Schemm R. Kreimeyer A. Goeldner M. Betz H. J. Biol. Chem.  2003,  278:  24011 
  • 1d Michael JP. Nat. Prod. Rep.  2003,  20:  476 
  • 1e Katritzky A. Rachwal S. Rachwal B. Tetrahedron  1996,  52:  15031 
  • 2 Katritzky AR. Pozharskii AF. Handbook of Heterocyclic Chemistry   2nd ed.:  Pergamon; Oxford: 2000.  p.616 
  • 3 Eicher T. Hauptmann S. The Chemistry of Heterocycles   Georg Thieme Verlag; Stuttgart: 1995.  p.329 
  • 4 Huber-Emden H, Hubele A, and Klahre G. inventors; Ger. Patent ZA19710000791,  19710209. 
  • 5 Samosorn S. Bremner JB. Ball A. Lewis K. Bioorg. Med. Chem.  2006,  14:  857 
  • 6 Maignan S. Guilloteau J. Zhou-Liu Q. Clément-Mella C. Mikol V. J. Mol. Biol.  1998,  282:  359 
  • 7a d’Angelo J. Mouscadet F. Desmäele D. Zouhiri F. Leh H. Pathol. Biol.  2001,  49:  237 
  • 7b Zouhiri F. Desmäele D. d’Angelo J. Ourevitch M. Mouscadet JF. Leh H. Bret ML. Tetrahedron Lett.  2001,  42:  8189 
  • 8a Cheng CH, Chen RM, Huang CW, and Yang CC. inventors; U.S. Patent  20050025995A1. 
  • 8b Thompson ME, Ma B, and Djurovich P. inventors; U.S. Patent  20050164031A1. 
  • 8c Knowles DB, and Kwong R. inventors; U.S. Patent  20050164030A1. 
  • 8d Kim JL. Shin IS. Kim H. J. Am. Chem. Soc.  2005,  127:  1614 
  • 9a Agrawal AK. Jenekhe SA. Chem. Mater.  1996,  8:  579 
  • 9b Jenekhe SA. Lu L. Alam MM. Macromolecules  2001,  34:  7315 
  • 10a Cho CS. Oh BH. Shim SC. Tetrahedron Lett.  1999,  40:  1499 
  • 10b Zhou L. Zhang Y. J. Chem. Soc., Perkin Trans. 1  1998,  2899 
  • 10c Larock RC. Kero M.-Y. Tetrahedron Lett.  1991,  32:  569 
  • 10d Zhou L. Tu S. Shi D. Dai G. Chen W. Synthesis  1988,  851 
  • 10e Larock RC. Babu S. Tetrahedron Lett.  1987,  28:  5291 
  • 10f Ozawa F. Yanagihara H. Yamamoto A. J. Org. Chem.  1986,  51:  415 
  • 10g Jones G. In Comprehensive Heterocyclic Chemistry II   Vol. 5:  Katritzky AR. Rees CW. Pergamon; New York: 1996.  p.167 
  • 10h Cho CS. Oh BH. Kim TJ. Kim TJ. Shim SC. Chem. Commun.  2000,  1885 
  • 10i Jiang B. Si YG. J. Org. Chem.  2002,  67:  9449 
  • 10j Skraup H. Chem. Ber.  1880,  13:  2086 
  • 10k Friedländer P. Chem. Ber.  1882,  15:  2572 
  • 10l Mansake RH. Kulka M. Org. React. (N. Y.)  1953,  7:  59 
  • 10m Linderman RJ. Kirollos KS. Tetrahedron Lett.  1990,  31:  2689 
  • 10n Theoclitou ME. Robinson LA. Tetrahedron Lett.  2002,  43:  3907 
  • 11a Cortese NA. Ziegler CB. Hrnjez BJ. Heck RF. J. Org. Chem.  1978,  43:  2952 
  • 11b Hegedus LS. Allen GF. Bozell JJ. Waterman EL. J. Am. Chem. Soc.  1978,  100:  5800 
  • 11c Kundu NG. Mahanty JS. Das P. Das B. Tetrahedron Lett.  1993,  34:  1625 
  • 11d Cacchi S. Fabrizi G. Marinelli F. Synlett  1999,  401 
  • 12a Diamond SE. Szalkiewicz A. Mares F. J. Am. Chem. Soc.  1979,  101:  490 
  • 12b Watanabe Y. Yamamoto M. Shim SC. Mitsudo T. Takegami Y. Chem. Lett.  1979,  8:  1025 
  • 12c Watanabe Y. Suzuki N. Shim SC. Yamamoto M. Mitsudo T. Takegami Y. Chem. Lett.  1980,  9:  429 
  • 12d Boyle WJ. Mares F. Organometallics  1982,  1:  1003 
  • 12e Abbiati G. Arcadi A. Marinelli F. Rossi E. Verdecchia M. Synlett  2006,  3218 
  • 13a Watanabe Y. Tsuji Y. Suzuki N. Chem. Lett.  1981,  10:  1067 
  • 13b Watanabe Y. Tsuji Y. Ohsugi Y. Tetrahedron Lett.  1981,  22:  2667 
  • 13c Watanabe Y. Tsuji Y. Ohsugi Y. Shida J. Bull. Chem. Soc. Jpn.  1983,  56:  2452 
  • 13d Watanabe Y. Tsuji Y. Shida J. Bull. Chem. Soc. Jpn.  1984,  57:  435 
  • 13e Tsuji Y. Nishimura H. Huh K.-T. Watanabe Y. J. Organomet. Chem.  1985,  286:  C44 
  • 13f Tsuji Y. Huh K.-T. Watanabe Y. J. Org. Chem.  1987,  59:  1673 
  • 13g Mierde HV. Ledoux N. Allaert B. Voort PVD. Drozdzak R. Vos DD. Verpoort F. New J. Chem.  2007,  31:  1572 
  • 13h Martinez R. Ramón DJ. Yus M. Eur. J. Org. Chem.  2007,  1599 
  • 14 Watanabe Y. Takatsuki K. Shim SC. Mitsudo T. Takegami Y. Bull. Chem. Soc. Jpn.  1978,  51:  3397 
  • 15a Yadav LDS. Rai A. Rai VK. Awasthi C. Tetrahedron Lett.  2008,  49:  687 
  • 15b Yadav LDS. Awasthi C. Rai VK. Rai A. Tetrahedron Lett.  2007,  48:  8033 
  • 15c Yadav LDS. Rai VK. Tetrahedron  2007,  63:  6924 
  • 15d Yadav LDS. Rai VK. Tetrahedron Lett.  2006,  47:  395 
  • 15e Yadav LDS. Yadav S. Rai VK. Green Chem.  2006,  8:  455 
  • 15f Yadav LDS. Yadav S. Rai VK. Tetrahedron  2005,  61:  10013 
  • 16a Yadav LDS. Rai A. Rai VK. Awasthi C. Synlett  2007,  1905 
  • 16b Yadav LDS. Awasthi C. Rai VK. Rai A. Tetrahedron Lett.  2007,  48:  4899 
  • 17 Renewable Bioresources: Scope and Modification for Non-Food Applications   Stevens CV. Verhé RG. John Wiley and Sons; Chichester: UK, 2004. 
  • 19 Audrieth LF. Ogg BA. The Chemistry of Hydrazines   John Wiley and Sons, Inc.; New York: 1951. 
18

General Procedure for the Synthesis of 1,3-Oxazin-2-ones(thiones) 4: Thoroughly mixed d-xylose/d-glucose 1 (1 mmol), semicarbazide hydrochloride/thiosemicarbazide 2 (1 mmol), sodium acetate (1 mmol) and montmorillonite K-10 clay (0.10 g) in a 20-mL vial were subjected to microwave irradiation in a CEM Discover Focused Microwave Synthesis System for 10 min at 90 ˚C. After completion of the reaction as indicated by TLC, H2O (10 mL) was added to precipitate the crude product, which was recrystallized from EtOH to afford analytically pure sample of 4.
Characterization Data of Representative Compounds: Compound 4a: white solid; yield: 82%; mp 145-148 ˚C. IR (KBr): 3392, 3386, 3011, 1692 cm. ¹H NMR (400 MHz, DMSO-d 6): δ = 4.11 (dd, J 2 Ha,2 Hb = 10.1 Hz, J 1 H,2 Ha = 5.4 Hz, 1 H, 2′Ha), 4.30 (dd, J 1 H,2 Ha = 5.4 Hz, J 1 H,2 Hb = 2.9 Hz, 1 H, 1′H), 4.63 (dd, J 2 Ha,2 Hb = 10.1 Hz, J 1 H,2 Hb = 2.9 Hz, 1 H, 2′Hb), 4.93-5.21 (br s, 2 H, 2 × OH, exch. D2O), 7.48 (d, J 5H,6H = 8.1 Hz, 1 H, 5-H), 7.89 (d, J 5H,6H = 8.1 Hz, 1 H, 4-H). ¹³C NMR (100 MHz, DMSO-d 6): δ = 64.5, 65.3, 73.7, 86.2, 105.9, 174.5. MS (FAB): m/z = 158 [M + H+]. Anal. Calcd for C6H7NO4: C, 45.86; H, 4.49; N, 8.91. Found: C, 46.17; H, 4.58; N, 8.79.
Compound 4b: white solid; yield: 80%; mp 159-161 ˚C. IR (KBr): 3391, 3386, 3009, 1051 cm. ¹H NMR (400 MHz, DMSO-d 6): δ = 4.13 (dd, J 2 Ha,2 Hb = 10.1 Hz, J 1 H,2 Ha = 5.3 Hz, 1 H, 2′Ha), 4.29 (dd, J 1 H,2 Ha = 5.3 Hz, J 1 H,2 Hb = 2.9 Hz, 1 H, 1′H), 4.66 (dd, J 2 Ha,2 Hb = 10.1 Hz, J 1 H,2 Hb = 2.9 Hz, 1 H, 2′Hb), 4.93-5.25 (br s, 2 H, 2× OH, exch. D2O), 7.47 (d, J 5H,6H = 8.2 Hz, 1 H, 5-H), 7.91 (d, J 5H,6H = 8.2 Hz, 1 H, 4-H). ¹³C NMR (100 MHz, DMSO-d 6): δ= 64.2, 65.4, 73.3, 86.5, 105.7, 192.3. MS (FAB): m/z = 174 [M + H+]. Anal. Calcd for C6H7NO3S: C, 41.61; H, 4.07; N, 8.09. Found: C, 41.86; H, 4.21; N, 7.88.
Compound 4c: white solid; yield: 79%; mp 153-155 ˚C. IR (KBr): 3399-3382, 3008, 1689 cm. ¹H NMR (400 MHz, DMSO-d 6): δ = 3.88 (ddd, J 2 H,3 Ha = 5.4 Hz, J 1 H,2 H = 4.6 Hz, J 2 H,3 Hb = 2.7 Hz, 1 H, 2′H), 4.03 (dd, J 3 Ha,3 Hb = 10.5 Hz, J 2 H,3 Ha = 5.4 Hz, 1 H, 3′Ha), 4.37 (d, J 1 H,2 H = 4.6 Hz, 1 H, 1′H), 4.59 (dd, J 3 Ha,3 Hb = 10.5 Hz, J 2 H,3 Hb = 2.7 Hz, 1 H, 3′Hb), 5.01-5.37 (br s, 3 H, 3 × OH, exch. D2O), 7.51 (d, J 4H,5H = 8.1 Hz, 1 H, 5-H), 7.85 (d, J 4H,5H = 8.1 Hz, 1 H, 4-H). ¹³C NMR (100 MHz, DMSO-d 6): δ = 64.3, 65.9, 71.7, 73.5, 86.5, 106.3, 174.8. MS (FAB): m/z = 188 [M + H+]. Anal. Calcd for C7H9NO5: C, 44.92; H, 4.85; N, 7.48. Found: C, 44.69; H, 4.73; N, 7.73.
Compound 4d: white solid; yield: 85%; mp 141-142 ˚C. IR (KBr): 3398-3382, 3011, 1055 cm. ¹H NMR (400 MHz, DMSO-d 6): δ = 3.89 (ddd, J 2 H,3 Ha = 5.4 Hz, J 1 H,2 H = 4.7 Hz, J 2 H,3 Hb = 2.7 Hz, 1 H, 2′H), 4.06 (dd, J 3 Ha,3 Hb = 10.5 Hz, J 2 H,3 Ha = 5.4 Hz, 1 H, 3′Ha), 4.34 (d, J 1 H,2 H = 4.7 Hz, 1 H, 1′H), 4.63 (dd, J 3 Ha,3 Hb = 10.5 Hz, J 2 H,3 Hb = 2.7 Hz, 1 H, 3′Hb), 5.06-5.38 (br s, 3 H, 3 × OH, exch. D2O), 7.54 (d, J 4H,5H = 8.1 Hz, 1 H, 5-H), 7.81 (d, J 4H,5H = 8.1 Hz, 1 H, 4-H). ¹³C NMR (100 MHz, DMSO-d 6): δ = 64.7, 65.5, 71.5, 73.8, 86.7, 106.1, 192.7. MS (FAB): m/z = 204 [M + H+]. Anal. Calcd for C7H9NO4S: C, 41.37; H, 4.46; N, 6.89. Found: C, 41.68; H, 4.31; N, 7.08.

20

General Procedure for the Synthesis of 4-Poly-hydroxyalkylquinolines 6: An intimate, solvent-free mixture of 1,3-oxazin-2-one(thione) 4 (2.4 mmol), cyclic ketone 5 (2.4 mmol) and montmorillonite K-10 clay (0.25 g) in a 20-mL vial was subjected to MW irradiation in a CEM Discover Focused Microwave Synthesis System at 90 ˚C for 9-14 min. After completion of the reaction as indicated by TLC, H2O (10 mL) was added to precipitate the crude product, which was recrystallized from EtOH to give an analytically pure sample of 6 as a white solid.
Characterization Data of Representative Compounds: Compound 6a: white solid; yield: 91%; mp 187-189 ˚C. IR (KBr): 3393, 3003, 1598, 1579, 1457 cm. ¹H NMR (400 MHz, DMSO-d 6): δ = 2.13-2.32 (m, 4 H, 5-CH2, 6-CH2), 3.74 (dd, J 2 Ha,2 Hb = 10.5 Hz, J 1 H,2 Ha = 5.5 Hz, 1 H, 2′Ha), 4.18 (dd, J 2 Ha,2 Hb = 10.5 Hz, J 1 H,2 Hb = 2.9 Hz, 1 H, 2′Hb), 4.29 (dd, J 1 H,2 Ha = 5.5 Hz, J 1 H,2 Hb = 2.9 Hz, 1 H, 1′H), 4.99-5.13 (br s, 2 H, 2 × OH, exch. D2O), 5.76 (m, 1 H, 7-H), 6.89 (d, J 7H,8H = 6.1 Hz, 1 H, 8-H), 7.92 (d, J 2H,3H = 7.7 Hz, 1 H, 2-H), 8.07 (d, J 2H,3H = 7.7 Hz, 1 H, 3-H). ¹³C NMR (100 MHz, DMSO-d 6): δ = 23.9, 28.8, 64.1, 70.3, 121.9, 123.5, 130.5, 135.5, 144.8, 147.9, 153.1. MS (FAB): m/z = 192 [M + H+]. Anal. Calcd for C11H13NO2: C, 69.09; H, 6.85; N, 7.32. Found: C, 69.45; H, 6.71; N, 7.65.
Compound 6b: white solid; yield: 83%; mp 176-178 ˚C. IR (KBr): 3380-3398, 3009, 1603, 1582, 1455 cm. ¹H NMR (400 MHz, DMSO-d 6): δ = 2.13-2.32 (m, 4 H, 5-CH2, 6-CH2), 3.85 (ddd, J 2 H,3 Ha = 5.3 Hz, J 1 H,2 H = 4.6 Hz, J 2 H,3 Hb = 2.8 Hz, 1 H, 2′H), 4.05 (dd, J 3 Ha,3 Hb = 10.3 Hz, J 2 H,3 Ha = 5.3 Hz, 1 H, 3′Ha), 4.29 (d, J 1 H,2 H = 4.7 Hz, 1 H, 1′H), 4.56 (dd, J 3 Ha,3 Hb = 10.3 Hz, J 2 H,3 Hb = 2.8 Hz, 1 H, 3′Hb), 4.99-5.16 (br s, 3 H, 3 × OH, exch. D2O), 5.78 (m, 1 H, 7-H), 6.85 (d, J 7H,8H = 6.2 Hz, 1 H, 8-H), 7.95 (d, J 2H,3H = 7.7 Hz, 1 H, 2-H), 8.08 (d, J 2H,3H = 7.7 Hz, 1 H, 3-H). ¹³C NMR (100 MHz, DMSO-d 6): δ = 23.8, 28.9, 64.5, 70.1, 73.5, 121.7, 123.8, 130.1, 135.5, 144.9, 147.6, 153.2. MS (FAB): m/z = 222 [M + H+]. Anal. Calcd for C12H15NO3: C, 65.14; H, 6.83; N, 6.33. Found: C, 64.86; H, 6.61; N, 6.55.
Compound 6e: white solid; yield: 89%; mp 203-205 ˚C. IR (KBr): 3395, 2998, 1693, 1601, 1585, 1451 cm. ¹H NMR (400 MHz, DMSO-d 6): δ = 2.18 (m, 2 H, 6-CH2), 2.67 (t, J 5H,6H = 6.3 Hz, 2 H, 5-CH2), 2.91 (t, J 6H,7H = 5.8 Hz, 2 H,
7-CH2), 3.71 (dd, J 2 Ha,2 Hb = 10.5 Hz, J 1 H,2 Ha = 5.5 Hz, 1 H, 2′Ha), 4.12 (dd, J 2 Ha,2 Hb = 10.5 Hz, J 1 H,2 Hb = 2.7 Hz, 1 H, 2′Hb), 4.23 (dd, J 1 H,2 Ha = 5.5 Hz, J 1 H,2 Hb = 2.7 Hz, 1 H, 1′H), 5.03-5.19 (br s, 2 H, 2 × OH, exch. D2O), 7.89 (d, J 2H,3H = 7.6 Hz, 1 H, 2-H), 8.03 (d, J 2H,3H = 7.6 Hz, 1 H, 3-H). ¹³C NMR (100 MHz, DMSO-d 6): δ = 23.7, 25.2, 44.1, 63.5, 70.5, 129.5, 131.7, 145.9, 148.3, 155.1, 192.5. MS (FAB): m/z = 208 [M + H+]. Anal. Calcd for C11H13NO3: C, 63.76; H, 6.32; N, 6.76. Found: C, 63.49; H, 6.61; N, 6.93.
Compound 6g: white solid; yield: 91%; mp 196-198 ˚C. IR (KBr): 3393, 2998, 1695, 1605, 1581, 1458 cm. ¹H NMR (400 MHz, DMSO-d 6): δ = 2.21 (m, 2 H, 7-CH2), 2.66 (t, J 7H,8H = 6.3 Hz, 2 H, 8-CH2), 2.92 (t, J 6H,7H = 5.7 Hz, 2 H, 6-CH2), 3.74 (dd, J 2 Ha,2 Hb = 10.5 Hz, J 1 H,2 Ha = 5.3 Hz, 1 H, 2′Ha), 4.11 (dd, J 2 Ha,2 Hb = 10.5 Hz, J 1 H,2 Hb = 2.7 Hz, 1 H, 2′Hb), 4.28 (dd, J 1 H,2 Ha = 5.3 Hz, J 1 H,2 Hb = 2.7 Hz, 1 H, 1′H), 5.07-5.18 (br s, 2 H, 2 × OH, exch. D2O), 7.85 (d, J 2H,3H = 7.5 Hz, 1 H, 2-H), 8.04 (d, J 2H,3H = 7.5 Hz, 1 H, 3-H). ¹³C NMR (100 MHz, DMSO-d 6): δ = 23.9, 25.1, 44.6, 63.1, 70.8, 129.3, 131.7, 145.5, 148.3, 155.2, 192.3. MS (FAB): m/z = 208 [M + H+]. Anal. Calcd for C11H13NO3: C, 63.76; H, 6.32; N, 6.76. Found: C, 63.93; H, 6.51; N, 6.59.