Subscribe to RSS
DOI: 10.1055/s-2008-1078277
K-10 Clay-Catalyzed Enol-Driven Decarboxylative Ring-Transformation Approach to Dihydro- and Tetrahydroquinolines from Carbohydrates
Publication History
Publication Date:
21 August 2008 (online)
Abstract
An original synthetic approach to 4-polyhydroxyalkylquinolines using unprotected d-glucose/d-xylose as biorenewable resources is reported. The synthetic protocol involves enol-driven Michael-type addition of cyclic ketones to aldose-derived 1,3-oxazin-2-ones followed by decarboxylative ring transformation to yield various novel 5,6-dihydro-/5,6,7,8-tetrahydro-4-polyhydroxyalkylquinolines and their 5-, 6-, or 8-one analogues. This is a one-pot montmorillonite K-10 clay-catalyzed process proceeding under solvent-free microwave irradiation conditions.
Key words
carbohydrates - mineral-catalyzed - microwaves - solvent-free - 1,3-oxazin-2-ones(thiones) - quinolines
-
1a
Van Straten NCR.Van Berkel THJ.Demont DR.Karstens W.-JF.Merkx R.Oosterom J.Schulz J.Van Someren RG.Timmers CM.van Zandvoort PM. J. Med. Chem. 2005, 48: 1697 -
1b
Gaillard S.Papamicael C.Marsais F.Dupas G.Levacher V. Synlett 2005, 441 -
1c
Foucaud B.Laube B.Schemm R.Kreimeyer A.Goeldner M.Betz H. J. Biol. Chem. 2003, 278: 24011 -
1d
Michael JP. Nat. Prod. Rep. 2003, 20: 476 -
1e
Katritzky A.Rachwal S.Rachwal B. Tetrahedron 1996, 52: 15031 - 2
Katritzky AR.Pozharskii AF. Handbook of Heterocyclic Chemistry 2nd ed.: Pergamon; Oxford: 2000. p.616 - 3
Eicher T.Hauptmann S. The Chemistry of Heterocycles Georg Thieme Verlag; Stuttgart: 1995. p.329 - 4
Huber-Emden H,Hubele A, andKlahre G. inventors; Ger. Patent ZA19710000791, 19710209. - 5
Samosorn S.Bremner JB.Ball A.Lewis K. Bioorg. Med. Chem. 2006, 14: 857 - 6
Maignan S.Guilloteau J.Zhou-Liu Q.Clément-Mella C.Mikol V. J. Mol. Biol. 1998, 282: 359 -
7a
d’Angelo J.Mouscadet F.Desmäele D.Zouhiri F.Leh H. Pathol. Biol. 2001, 49: 237 -
7b
Zouhiri F.Desmäele D.d’Angelo J.Ourevitch M.Mouscadet JF.Leh H.Bret ML. Tetrahedron Lett. 2001, 42: 8189 -
8a
Cheng CH,Chen RM,Huang CW, andYang CC. inventors; U.S. Patent 20050025995A1. -
8b
Thompson ME,Ma B, andDjurovich P. inventors; U.S. Patent 20050164031A1. -
8c
Knowles DB, andKwong R. inventors; U.S. Patent 20050164030A1. -
8d
Kim JL.Shin IS.Kim H. J. Am. Chem. Soc. 2005, 127: 1614 -
9a
Agrawal AK.Jenekhe SA. Chem. Mater. 1996, 8: 579 -
9b
Jenekhe SA.Lu L.Alam MM. Macromolecules 2001, 34: 7315 -
10a
Cho CS.Oh BH.Shim SC. Tetrahedron Lett. 1999, 40: 1499 -
10b
Zhou L.Zhang Y. J. Chem. Soc., Perkin Trans. 1 1998, 2899 -
10c
Larock RC.Kero M.-Y. Tetrahedron Lett. 1991, 32: 569 -
10d
Zhou L.Tu S.Shi D.Dai G.Chen W. Synthesis 1988, 851 -
10e
Larock RC.Babu S. Tetrahedron Lett. 1987, 28: 5291 -
10f
Ozawa F.Yanagihara H.Yamamoto A. J. Org. Chem. 1986, 51: 415 -
10g
Jones G. In Comprehensive Heterocyclic Chemistry II Vol. 5:Katritzky AR.Rees CW. Pergamon; New York: 1996. p.167 -
10h
Cho CS.Oh BH.Kim TJ.Kim TJ.Shim SC. Chem. Commun. 2000, 1885 -
10i
Jiang B.Si YG. J. Org. Chem. 2002, 67: 9449 -
10j
Skraup H. Chem. Ber. 1880, 13: 2086 -
10k
Friedländer P. Chem. Ber. 1882, 15: 2572 -
10l
Mansake RH.Kulka M. Org. React. (N. Y.) 1953, 7: 59 -
10m
Linderman RJ.Kirollos KS. Tetrahedron Lett. 1990, 31: 2689 -
10n
Theoclitou ME.Robinson LA. Tetrahedron Lett. 2002, 43: 3907 -
11a
Cortese NA.Ziegler CB.Hrnjez BJ.Heck RF. J. Org. Chem. 1978, 43: 2952 -
11b
Hegedus LS.Allen GF.Bozell JJ.Waterman EL. J. Am. Chem. Soc. 1978, 100: 5800 -
11c
Kundu NG.Mahanty JS.Das P.Das B. Tetrahedron Lett. 1993, 34: 1625 -
11d
Cacchi S.Fabrizi G.Marinelli F. Synlett 1999, 401 -
12a
Diamond SE.Szalkiewicz A.Mares F. J. Am. Chem. Soc. 1979, 101: 490 -
12b
Watanabe Y.Yamamoto M.Shim SC.Mitsudo T.Takegami Y. Chem. Lett. 1979, 8: 1025 -
12c
Watanabe Y.Suzuki N.Shim SC.Yamamoto M.Mitsudo T.Takegami Y. Chem. Lett. 1980, 9: 429 -
12d
Boyle WJ.Mares F. Organometallics 1982, 1: 1003 -
12e
Abbiati G.Arcadi A.Marinelli F.Rossi E.Verdecchia M. Synlett 2006, 3218 -
13a
Watanabe Y.Tsuji Y.Suzuki N. Chem. Lett. 1981, 10: 1067 -
13b
Watanabe Y.Tsuji Y.Ohsugi Y. Tetrahedron Lett. 1981, 22: 2667 -
13c
Watanabe Y.Tsuji Y.Ohsugi Y.Shida J. Bull. Chem. Soc. Jpn. 1983, 56: 2452 -
13d
Watanabe Y.Tsuji Y.Shida J. Bull. Chem. Soc. Jpn. 1984, 57: 435 -
13e
Tsuji Y.Nishimura H.Huh K.-T.Watanabe Y. J. Organomet. Chem. 1985, 286: C44 -
13f
Tsuji Y.Huh K.-T.Watanabe Y. J. Org. Chem. 1987, 59: 1673 -
13g
Mierde HV.Ledoux N.Allaert B.Voort PVD.Drozdzak R.Vos DD.Verpoort F. New J. Chem. 2007, 31: 1572 -
13h
Martinez R.Ramón DJ.Yus M. Eur. J. Org. Chem. 2007, 1599 - 14
Watanabe Y.Takatsuki K.Shim SC.Mitsudo T.Takegami Y. Bull. Chem. Soc. Jpn. 1978, 51: 3397 -
15a
Yadav LDS.Rai A.Rai VK.Awasthi C. Tetrahedron Lett. 2008, 49: 687 -
15b
Yadav LDS.Awasthi C.Rai VK.Rai A. Tetrahedron Lett. 2007, 48: 8033 -
15c
Yadav LDS.Rai VK. Tetrahedron 2007, 63: 6924 -
15d
Yadav LDS.Rai VK. Tetrahedron Lett. 2006, 47: 395 -
15e
Yadav LDS.Yadav S.Rai VK. Green Chem. 2006, 8: 455 -
15f
Yadav LDS.Yadav S.Rai VK. Tetrahedron 2005, 61: 10013 -
16a
Yadav LDS.Rai A.Rai VK.Awasthi C. Synlett 2007, 1905 -
16b
Yadav LDS.Awasthi C.Rai VK.Rai A. Tetrahedron Lett. 2007, 48: 4899 - 17
Renewable
Bioresources: Scope and Modification for Non-Food Applications
Stevens CV.Verhé RG. John Wiley and Sons; Chichester: UK, 2004. - 19
Audrieth LF.Ogg BA. The Chemistry of Hydrazines John Wiley and Sons, Inc.; New York: 1951.
References and Notes
General Procedure
for the Synthesis of 1,3-Oxazin-2-ones(thiones)
4: Thoroughly mixed d-xylose/d-glucose 1 (1 mmol),
semicarbazide hydrochloride/thiosemicarbazide 2 (1 mmol), sodium acetate (1 mmol) and
montmorillonite K-10 clay (0.10 g) in a 20-mL vial were subjected
to microwave irradiation in a CEM Discover Focused Microwave Synthesis
System for 10 min at 90 ˚C. After completion of the reaction
as indicated by TLC, H2O (10 mL) was added to precipitate
the crude product, which was recrystallized from EtOH to afford
analytically pure sample of 4.
Characterization Data of Representative Compounds: Compound 4a: white solid; yield: 82%;
mp 145-148 ˚C. IR (KBr): 3392, 3386, 3011, 1692
cm-¹. ¹H NMR (400
MHz, DMSO-d
6): δ = 4.11
(dd, J
2
′
Ha,2
′
Hb = 10.1
Hz, J
1
′
H,2
′
Ha = 5.4 Hz,
1 H, 2′Ha), 4.30 (dd, J
1
′
H,2
′
Ha = 5.4
Hz, J
1
′
H,2
′
Hb = 2.9
Hz, 1 H, 1′H), 4.63 (dd, J
2
′
Ha,2
′
Hb = 10.1
Hz, J
1
′
H,2
′
Hb = 2.9
Hz, 1 H, 2′Hb), 4.93-5.21 (br s, 2
H, 2 × OH, exch. D2O), 7.48 (d, J
5H,6H = 8.1 Hz,
1 H, 5-H), 7.89 (d, J
5H,6H = 8.1
Hz, 1 H, 4-H). ¹³C NMR (100 MHz, DMSO-d
6): δ = 64.5,
65.3, 73.7, 86.2, 105.9, 174.5. MS (FAB): m/z = 158 [M + H+].
Anal. Calcd for C6H7NO4: C, 45.86;
H, 4.49; N, 8.91. Found: C, 46.17; H, 4.58; N, 8.79.
Compound 4b: white solid; yield: 80%;
mp 159-161 ˚C. IR (KBr): 3391, 3386, 3009, 1051
cm-¹. ¹H NMR (400
MHz, DMSO-d
6): δ = 4.13
(dd, J
2
′
Ha,2
′
Hb = 10.1
Hz, J
1
′
H,2
′
Ha = 5.3 Hz,
1 H, 2′Ha), 4.29 (dd, J
1
′
H,2
′
Ha = 5.3
Hz, J
1
′
H,2
′
Hb = 2.9
Hz, 1 H, 1′H), 4.66 (dd, J
2
′
Ha,2
′
Hb = 10.1
Hz, J
1
′
H,2
′
Hb = 2.9
Hz, 1 H, 2′Hb), 4.93-5.25 (br s, 2
H, 2× OH, exch. D2O), 7.47 (d, J
5H,6H = 8.2
Hz, 1 H, 5-H), 7.91 (d, J
5H,6H = 8.2
Hz, 1 H, 4-H). ¹³C NMR (100 MHz, DMSO-d
6): δ= 64.2,
65.4, 73.3, 86.5, 105.7, 192.3. MS (FAB): m/z = 174 [M + H+].
Anal. Calcd for C6H7NO3S: C, 41.61;
H, 4.07; N, 8.09. Found: C, 41.86; H, 4.21; N, 7.88.
Compound 4c: white solid; yield: 79%;
mp 153-155 ˚C. IR (KBr): 3399-3382, 3008,
1689 cm-¹. ¹H NMR
(400 MHz, DMSO-d
6): δ = 3.88
(ddd, J
2
′
H,3
′
Ha = 5.4
Hz, J
1
′
H,2
′
H = 4.6
Hz, J
2
′
H,3
′
Hb = 2.7
Hz, 1 H, 2′H), 4.03 (dd, J
3
′
Ha,3
′
Hb = 10.5
Hz, J
2
′
H,3
′
Ha = 5.4
Hz, 1 H, 3′Ha), 4.37 (d, J
1
′
H,2
′
H = 4.6
Hz, 1 H, 1′H), 4.59 (dd, J
3
′
Ha,3
′
Hb = 10.5
Hz, J
2
′
H,3
′
Hb = 2.7
Hz, 1 H, 3′Hb), 5.01-5.37 (br s, 3
H, 3 × OH, exch. D2O), 7.51 (d, J
4H,5H = 8.1 Hz,
1 H, 5-H), 7.85 (d, J
4H,5H = 8.1
Hz, 1 H, 4-H). ¹³C NMR (100 MHz, DMSO-d
6): δ = 64.3,
65.9, 71.7, 73.5, 86.5, 106.3, 174.8. MS (FAB): m/z = 188 [M + H+]. Anal.
Calcd for C7H9NO5: C, 44.92; H,
4.85; N, 7.48. Found: C, 44.69; H, 4.73; N, 7.73.
Compound 4d: white solid; yield: 85%;
mp 141-142 ˚C. IR (KBr): 3398-3382, 3011,
1055 cm-¹. ¹H NMR
(400 MHz, DMSO-d
6): δ = 3.89
(ddd, J
2
′
H,3
′
Ha = 5.4
Hz, J
1
′
H,2
′
H = 4.7
Hz, J
2
′
H,3
′
Hb = 2.7
Hz, 1 H, 2′H), 4.06 (dd, J
3
′
Ha,3
′
Hb = 10.5
Hz, J
2
′
H,3
′
Ha = 5.4
Hz, 1 H, 3′Ha), 4.34 (d, J
1
′
H,2
′
H = 4.7
Hz, 1 H, 1′H), 4.63 (dd, J
3
′
Ha,3
′
Hb = 10.5
Hz, J
2
′
H,3
′
Hb = 2.7
Hz, 1 H, 3′Hb), 5.06-5.38 (br s, 3
H, 3 × OH, exch. D2O), 7.54 (d, J
4H,5H = 8.1 Hz,
1 H, 5-H), 7.81 (d, J
4H,5H = 8.1
Hz, 1 H, 4-H). ¹³C NMR (100 MHz, DMSO-d
6): δ = 64.7,
65.5, 71.5, 73.8, 86.7, 106.1, 192.7. MS (FAB): m/z = 204 [M + H+]. Anal.
Calcd for C7H9NO4S: C, 41.37; H,
4.46; N, 6.89. Found: C, 41.68; H, 4.31; N, 7.08.
General Procedure
for the Synthesis of 4-Poly-hydroxyalkylquinolines 6: An intimate,
solvent-free mixture of 1,3-oxazin-2-one(thione) 4 (2.4
mmol), cyclic ketone 5 (2.4 mmol) and montmorillonite
K-10 clay (0.25 g) in a 20-mL vial was subjected to MW irradiation
in a CEM Discover Focused Microwave Synthesis System at 90 ˚C
for 9-14 min. After completion of the reaction as indicated
by TLC, H2O (10 mL) was added to precipitate the crude product,
which was recrystallized from EtOH to give an analytically pure
sample of 6 as a white solid.
Characterization Data of Representative Compounds: Compound 6a: white solid; yield: 91%; mp
187-189 ˚C. IR (KBr): 3393, 3003, 1598, 1579,
1457 cm-¹. ¹H NMR
(400 MHz, DMSO-d
6): δ = 2.13-2.32
(m, 4 H, 5-CH2, 6-CH2), 3.74 (dd, J
2
′
Ha,2
′
Hb = 10.5
Hz, J
1
′
H,2
′
Ha = 5.5
Hz, 1 H, 2′Ha), 4.18 (dd, J
2
′
Ha,2
′
Hb = 10.5
Hz, J
1
′
H,2
′
Hb = 2.9
Hz, 1 H, 2′Hb), 4.29 (dd, J
1
′
H,2
′
Ha = 5.5
Hz, J
1
′
H,2
′
Hb = 2.9
Hz, 1 H, 1′H), 4.99-5.13 (br s, 2 H, 2 × OH,
exch. D2O), 5.76 (m, 1 H, 7-H), 6.89 (d, J
7H,8H = 6.1 Hz,
1 H, 8-H), 7.92 (d, J
2H,3H = 7.7
Hz, 1 H, 2-H), 8.07 (d, J
2H,3H = 7.7
Hz, 1 H, 3-H). ¹³C NMR (100 MHz, DMSO-d
6): δ = 23.9,
28.8, 64.1, 70.3, 121.9, 123.5, 130.5, 135.5, 144.8, 147.9, 153.1.
MS (FAB): m/z = 192 [M + H+].
Anal. Calcd for C11H13NO2: C, 69.09;
H, 6.85; N, 7.32. Found: C, 69.45; H, 6.71; N, 7.65.
Compound 6b: white solid; yield: 83%; mp
176-178 ˚C. IR (KBr): 3380-3398, 3009,
1603, 1582, 1455 cm-¹. ¹H
NMR (400 MHz, DMSO-d
6): δ = 2.13-2.32
(m, 4 H, 5-CH2, 6-CH2), 3.85 (ddd, J
2
′
H,3
′
Ha = 5.3
Hz, J
1
′
H,2
′
H = 4.6
Hz, J
2
′
H,3
′
Hb = 2.8
Hz, 1 H, 2′H), 4.05 (dd, J
3
′
Ha,3
′
Hb = 10.3
Hz, J
2
′
H,3
′
Ha = 5.3 Hz,
1 H, 3′Ha), 4.29 (d, J
1
′
H,2
′
H = 4.7
Hz, 1 H, 1′H), 4.56 (dd, J
3
′
Ha,3
′
Hb = 10.3
Hz, J
2
′
H,3
′
Hb = 2.8
Hz, 1 H, 3′Hb), 4.99-5.16 (br s, 3
H, 3 × OH, exch. D2O), 5.78 (m, 1 H, 7-H), 6.85
(d, J
7H,8H = 6.2
Hz, 1 H, 8-H), 7.95 (d, J
2H,3H = 7.7
Hz, 1 H, 2-H), 8.08 (d, J
2H,3H = 7.7
Hz, 1 H, 3-H). ¹³C NMR (100 MHz, DMSO-d
6): δ = 23.8,
28.9, 64.5, 70.1, 73.5, 121.7, 123.8, 130.1, 135.5, 144.9, 147.6,
153.2. MS (FAB): m/z = 222 [M + H+].
Anal. Calcd for C12H15NO3: C, 65.14;
H, 6.83; N, 6.33. Found: C, 64.86; H, 6.61; N, 6.55.
Compound 6e: white solid; yield: 89%; mp
203-205 ˚C. IR (KBr): 3395, 2998, 1693, 1601,
1585, 1451 cm-¹. ¹H
NMR (400 MHz, DMSO-d
6): δ = 2.18
(m, 2 H, 6-CH2), 2.67 (t, J
5H,6H = 6.3
Hz, 2 H, 5-CH2), 2.91 (t, J
6H,7H = 5.8
Hz, 2 H,
7-CH2), 3.71 (dd, J
2
′
Ha,2
′
Hb = 10.5
Hz, J
1
′
H,2
′
Ha = 5.5
Hz, 1 H, 2′Ha), 4.12 (dd, J
2
′
Ha,2
′
Hb = 10.5
Hz, J
1
′
H,2
′
Hb = 2.7
Hz, 1 H, 2′Hb), 4.23 (dd, J
1
′
H,2
′
Ha = 5.5
Hz, J
1
′
H,2
′
Hb = 2.7
Hz, 1 H, 1′H), 5.03-5.19 (br s, 2 H, 2 × OH,
exch. D2O), 7.89 (d, J
2H,3H = 7.6
Hz, 1 H, 2-H), 8.03 (d, J
2H,3H = 7.6
Hz, 1 H, 3-H). ¹³C NMR (100 MHz, DMSO-d
6): δ = 23.7,
25.2, 44.1, 63.5, 70.5, 129.5, 131.7, 145.9, 148.3, 155.1, 192.5.
MS (FAB): m/z = 208 [M + H+].
Anal. Calcd for C11H13NO3: C, 63.76; H,
6.32; N, 6.76. Found: C, 63.49; H, 6.61; N, 6.93.
Compound 6g: white solid; yield: 91%; mp
196-198 ˚C. IR (KBr): 3393, 2998, 1695, 1605,
1581, 1458 cm-¹. ¹H
NMR (400 MHz, DMSO-d
6): δ = 2.21
(m, 2 H, 7-CH2), 2.66 (t, J
7H,8H =
6.3 Hz, 2 H, 8-CH2), 2.92 (t, J
6H,7H = 5.7
Hz, 2 H, 6-CH2), 3.74 (dd, J
2
′
Ha,2
′
Hb = 10.5
Hz, J
1
′
H,2
′
Ha = 5.3
Hz, 1 H, 2′Ha), 4.11 (dd, J
2
′
Ha,2
′
Hb = 10.5
Hz, J
1
′
H,2
′
Hb = 2.7
Hz, 1 H, 2′Hb), 4.28 (dd, J
1
′
H,2
′
Ha = 5.3
Hz, J
1
′
H,2
′
Hb = 2.7
Hz, 1 H, 1′H), 5.07-5.18 (br s, 2 H, 2 × OH,
exch. D2O), 7.85 (d, J
2H,3H = 7.5
Hz, 1 H, 2-H), 8.04 (d, J
2H,3H = 7.5
Hz, 1 H, 3-H). ¹³C NMR (100 MHz, DMSO-d
6): δ = 23.9,
25.1, 44.6, 63.1, 70.8, 129.3, 131.7, 145.5, 148.3, 155.2, 192.3.
MS (FAB): m/z = 208 [M + H+].
Anal. Calcd for C11H13NO3: C, 63.76; H,
6.32; N, 6.76. Found: C, 63.93; H, 6.51; N, 6.59.