Subscribe to RSS
DOI: 10.1055/a-1371-4391
Asymmetric Inverse-Electron-Demand Diels–Alder Reactions of 2-Pyrones by Lewis Acid Catalysis
We acknowledge generous financial support from the National Natural Science Foundation of China (Grants 21801043 and 22071030).
Abstract
Diels–Alder reactions of 2-pyrones with alkenes can provide highly functionalized [2,2,2]-bicyclic lactones under mild reaction conditions. Synthetic utilizations of these reactions have been well demonstrated in natural-product synthesis. Although several catalytic asymmetric strategies have been realized, current research in this area is still largely underdeveloped. Recent advances in enantioselective inverse-electron-demand Diels–Alder reactions with Lewis acid catalysis are reviewed.
1 Introduction
2 State of the Art of Enantioselective Diels–Alder Reactions of 2-Pyrones by Lewis Acid Catalysis
3 Enantioselective Synthesis of Arene cis-Dihydrodiols by Diels–Alder/Retro-Diels–Alder Reactions of 2-Pyrones
4 Enantioselective Synthesis of cis-Decalin Derivatives by Diels–Alder Reactions of 2-Pyrones
5 Conclusions
Key words
pyrones - asymmetric catalysis - Diels–Alder reactions - Lewis acid catalysis - natural product synthesisPublication History
Received: 15 January 2021
Accepted after revision: 24 January 2021
Accepted Manuscript online:
24 January 2021
Article published online:
17 February 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Afarinkia K, Vinader V, Nelson TD, Posner GH. Tetrahedron 1992; 48: 9111
- 1b Huang G, Kouklovsky C, de la Torre A. Chem. Eur. J. 2021; in press
- 2a Cai Q. Chin. J. Chem. 2019; 37: 946
- 2b Watt DS, Corey EJ. Tetrahedron Lett. 1972; 13: 4651
- 2c Corey EJ, Watt DS. J. Am. Chem. Soc. 1973; 95: 2303
- 2d Martin SF, Rüeger H, Williamson SA, Grzejszczak S. J. Am. Chem. Soc. 1987; 109: 6124
- 2e Nicolaou KC, Liu JJ, Hwang C.-K, Dai W.-M, Guy RK. J. Chem. Soc., Chem. Commun. 1992; 1118
- 2f Nicolaou KC, Yang Z, Liu JJ, Ueno H, Nantermet PG, Guy RK, Claiborne CF, Renaud J, Couladouros EA, Paulvannan K, Sorensen EJ. Nature 1997; 367: 630
- 2g Shim I.-J, Choi E.-S, Cho C.-G. Angew. Chem. Int. Ed. 2007; 46: 2303
- 2h Smith MW, Snyder SA. A. J. Am. Chem. Soc. 2013; 135: 12964
- 2i Cho H.-K, Lim H.-Y, Cho C.-G. Org. Lett. 2013; 15: 5806
- 2j Zhao P, Beaudry CM. Org. Lett. 2013; 15: 402
- 2k Zhao P, Beaudry CM. Angew. Chem. Int. Ed. 2014; 53: 10500
- 2l Feng M, Jiang X. Chem. Commun. 2014; 50: 9690
- 2m Gan P, Smith MW, Braffman NR, Snyder SA. Angew. Chem. Int. Ed. 2016; 55: 3625
- 2n Wang N, Du S, Li D, Jiang X. Org. Lett. 2017; 19: 3167
- 2o Wang N, Liu J, Wang C, Bai L, Jiang X. Org. Lett. 2018; 20: 292
- 2p Lee J.-H, Cho C.-G. Org. Lett. 2018; 20: 7312
- 2q Yu X, Xiao L, Wang Z, Luo T. J. Am. Chem. Soc. 2019; 141: 3440
- 3a Markό IE, Evans GR. Tetrahedron Lett. 1994; 35: 2771
- 3b Markό IE, Evans GR, Declercq J.-P. Tetrahedron 1994; 50: 4557
- 3c Markό IE, Evans GR, Declercq J.-P, Feneau-Dupont J, Tinant B. Bull. Soc. Chim. Belg. 1994; 103: 295
- 3d Markό IE, Evans GR, Seres P, Chellé I, Janousek Z. Pure Appl. Chem. 1996; 68: 113
- 3e Markό IE, Chellé-Regnaut I, Leroy B, Warriner SL. Tetrahedron Lett. 1997; 38: 4269
- 3f Markό IE, Warriner SL, Augustyns B. Org. Lett. 2000; 2: 3123
- 4a Posner GH, Carry J.-C, Lee JK, Bull DS, Dai H. Tetrahedron Lett. 1994; 35: 1321
- 4b Posner GH, Eydoux F, Lee JK, Bull DS. Tetrahedron Lett. 1994; 35: 7541
- 4c Posner GH, Dai H, Bull DS, Lee JK, Eydoux F, Ishihara Y, Welsh W, Pryor N, Petr S. J. Org. Chem. 1996; 61: 671
- 5a Wang Y, Li H, Wang Y.-Q, Liu Y, Foxman BM, Deng L. J. Am. Chem. Soc. 2007; 129: 6364
- 5b Singh RP, Bartelson K, Wang Y, Su H, Lu X, Deng L. J. Am. Chem. Soc. 2008; 130: 2422
- 5c Bartelson KJ, Singh RP, Foxman BM, Deng L. Chem. Sci. 2011; 2: 1940
- 6 Soh JY.-T, Tan C.-H. J. Am. Chem. Soc. 2009; 131: 6904
- 7 Shi L.-M, Dong W.-W, Tao H.-Y, Dong X.-Q, Wang C.-J. Org. Lett. 2017; 19: 4532
- 8 Zhou Y, Zhou Z, Du W, Chen Y. Acta Chim. Sinica (Engl. Ed.) 2018; 76: 382
- 9 Cole C, Fuentes L, Snyder SA. Chem. Sci. 2020; 11: 2175
- 10a Shimizu H, Okamura H, Iwagawa T, Nakatani M. Tetrahedron 2001; 57: 1903
- 10b Suzuki T, Watanabe S, Kobayashi S, Tanino K. Org. Lett. 2017; 19: 922
- 11 Burch P, Binaghi M, Scherer M, Wentzel C, Bossert D, Eberhardt L, Neuburger M, Scheiffele P, Gademann K. Chem. Eur. J. 2013; 19: 2589
- 12a Gibson DT, Koch JR, Kallio RE. Biochemistry 1968; 7: 2653
- 12b Gibson DT, Koch JR, Schuld CL, Kallio RE. Biochemistry 1968; 7: 3795
- 12c Boyd DR, Sheldrake GN. Nat. Prod. Rep. 1998; 15: 309
- 13a Duchek J, Adams DR, Hudlicky T. Chem. Rev. 2011; 111: 4223
- 13b Reed JW, Hudlicky T. Acc. Chem. Res. 2015; 48: 674
- 13c Hudlicky T. ACS Omega 2018; 3: 17326
- 14a Ballard DG. H, Courtis A, Shirley IM, Taylor SC. J. Chem. Soc., Chem. Commun. 1983; 954
- 14b Hudlicky T, Luna H, Barbieri G, Kwart LD. J. Am. Chem. Soc. 1988; 110: 4735
- 14c Sullivan B, Carrera I, Drouin M, Hudlicky T. Angew. Chem. Int. Ed. 2009; 48: 4229
- 14d Palframan MJ, Kociok-Köhn G, Lewis SE. Chem. Eur. J. 2012; 18: 4766
- 14e Varghese V, Hudlicky T. Angew. Chem. Int. Ed. 2014; 53: 4355
- 14f Baidilov D, Rycek L, Trant JF, Froese J, Murphy B, Hudlicky T. Angew. Chem. Int. Ed. 2018; 57: 10994
- 14g Makarova M, Endoma-Arias MA, Dela Paz H, Simionescu R, Hudlicky T. J. Am. Chem. Soc. 2019; 141: 10883
- 15a Southgate EH, Pospech J, Fu J, Holycross DR, Sarlah D. Nat. Chem. 2016; 8: 922
- 15b Southgate EH, Holycross DR, Sarlah D. Angew. Chem. Int. Ed. 2017; 56: 15049
- 15c Hernandez LW, Pospech J, Klöckner U, Bingham TW, Sarlah D. J. Am. Chem. Soc. 2017; 139: 15656
- 15d Okumura M, Sarlah D. Synlett 2018; 29: 845
- 15e Bingham TW, Hernadez LW, Olson DG, Svec RL, Hergenrother PJ, Sarlah D. J. Am. Chem. Soc. 2019; 141: 657
- 15f Sun F, Metz P. Synlett 2013; 24: 457
- 16 Liang X.-W, Zhao Y, Si X.-G, Xu M.-M, Tan J.-H, Zhang Z.-M, Zheng C.-G, Zheng C, Cai Q. Angew. Chem. Int. Ed. 2019; 58: 14562
- 17a Lim C, Baek DJ, Kim D, Youn SW, Kim S. Org. Lett. 2009; 11: 2583
- 17b Mondal S, Sureshan KM. J. Org. Chem. 2016; 81: 11635
- 18a Li G, Kusari S, Spiteller M. Nat. Prod. Rep. 2014; 31: 1175
- 18b Schnermann MJ, Shenvi RA. Nat. Prod. Rep. 2015; 32: 543
- 19a Singh V, Iyer SR, Pal S. Tetrahedron 2005; 61: 9197
- 19b Dhambri S, Mohammad S, Nguyen Van Buu O, Galvani G, Meyer Y, Lannou M.-I, Sorin G, Ardisson J. Nat. Prod. Rep. 2015; 32: 841
- 20 Si X.-G, Zhang Z.-M, Zheng C.-G, Li Z.-T, Cai Q. Angew. Chem. Int. Ed. 2020; 59: 18412
- 21a Devine PN, Oh T. J. Org. Chem. 1991; 56: 1955
- 21b Pyne SG, Safaei GJ, Hockless DC. R, Skelton BW, Sobolev AN, White AH. Tetrahedron 1994; 50: 941
- 21c Earley WG, Jacobsen JE, Madin A, Meier GP, O’Donnell CJ, Oh T, Old DW, Overman LE, Sharp MJ. J. Am. Chem. Soc. 2005; 127: 18046
- 21d Jung ME, Roberts CA, Perez F, Pham HV, Zou L, Houk KN. Org. Lett. 2016; 18: 32
- 22a Chan WR, Taylor DR, Willis CR. Chem. Commun. (London) 1967; 191
- 22b Chan WR, Taylor DR, Willis CR. J. Chem. Soc. C 1968; 2781
- 22c Blount JF, Chan WR, Clardy J, Manchand PS, Pezzanite JO. J. Chem. Res., Synop. 1984; 114
- 22d Itokawa H, Ichihara Y, Kojima H, Watanabe K, Takeya K. Phytochemistry 1989; 28: 1667
- 22e Kubo I, Asaka Y, Shibata K. Phytochemistry 1991; 30: 2545
- 22f Maciel MA. M, Pinto AC, Brabo SN, Da Silva MN. Phytochemistry 1998; 49: 823
- 22g Grynberg NF, Echevarria A, Lima JE, Pamplona SS, Pinto AC, Maciel MA. M. Planta Med. 1999; 65: 687
- 22h Puebla P, López JL, Guerrero M, Carrón R, Martín ML, San Román L, San Feliciano A. Phytochemistry 2003; 62: 551
- 23a Liu H.-J, Zhu J.-L, Chen I.-C, Jankowska R, Han Y, Shia K.-S. Angew. Chem. Int. Ed. 2003; 42: 1851
- 23b Chen I.-C, Wu Y.-K, Liu H.-J, Zhu J.-L. Chem. Commun. 2008; 4720
- 23c Pouwer RH, Schill H, Williams CM, Bernhardt PV. Eur. J. Org. Chem. 2007; 4699
- 23d Merritt AT, Pouwer RH, Williams DJ, Williams CM, Ley SV. Org. Biomol. Chem. 2011; 9: 4745
- 23e Mirzayans PM, Pouwer RH, Williams CM, Bernhardt PV. Eur. J. Org. Chem. 2012; 1633
- 23f Liu X, Lee C.-S. Org. Lett. 2012; 14: 2886
- 24 Carlos AM. M, Contreira ME, Martins BS, Immich MF, Moro AV, Lüdtke DS. Tetrahedron 2015; 71: 1202
For selected examples, see:
For selected reviews, see:
For selected examples, see:
For selected reviews, see:
For selected examples, see:
For synthetic efforts towards 19-norclerodane diterpenoids, see: