References and Notes
- 1
Penning TD.
Askonas LJ.
Djuric SW.
Haack RA.
Yu SS.
Michener ML.
Krivi GG.
Pyla EY.
Bioorg. Med.
Chem.
1995,
5:
2517
-
2a
Pedras MSC.
Zheng Q.-N.
Sarwar MG.
Org. Biomol.
Chem.
2007,
5:
1167
-
2b
Skey J.
O’Reilly RK.
Chem. Commun.
2008,
4183
- 3
Ocain TD.
Rich DH.
Biochem. Biophys.
1987,
145:
1038
- 4
Park JD.
Kim DH.
J. Med. Chem.
2002,
45:
911
- 5
Hesek D.
Toth M.
Krchnak V.
Fridman R.
Mobashery S.
J. Org.
Chem.
2006,
71:
161
- 6
Salvador LA.
Elofsson M.
Kihlberg J.
Tetrahedron
1995,
51:
5643
-
7a
Shalaby MA.
Grote CW.
Rapoport H.
J. Org. Chem.
1996,
61:
9045
-
7b
Yamashiro D.
Li CH.
Int. J. Pept. Protein
Res.
1988,
31:
322
-
8a
Spatola AF.
Edwards JV.
Biopolymers
1986,
25:
229
-
8b
Spatola AF.
Bettag AL.
J.
Org. Chem.
1981,
46:
2393
- 9
Bienvenue DL.
Bennett B.
Holz RC.
J.
Inorg. Biochem.
2000,
78:
43
- 10
Wynne JH.
Jensen SD.
Snow AW.
J.
Org. Chem.
2003,
68:
3733
- 11
Dehmel F.
Weinbrenner S.
Julius H.
Ciossek T.
Maier T.
Stengel T.
Fettis K.
Burkhardt C.
Wieland H.
Beckers T.
J. Med. Chem.
2008,
51:
3985
- 12
Hu L.
Zhu H.
Du-Ming D.
Xu J.
J.
Org. Chem.
2007,
72:
4543
- 13
Wipf P.
Jayasuriya N.
Chirality
2008,
20:
425
- 14
Choi J.
Yoon NM.
Synth. Commun.
1995,
25:
2655
- 15
Ellis LM.
Reid EE.
J. Am. Chem. Soc.
1932,
54:
1674
- 16
Snow SW.
Foos EE.
Synthesis
2003,
509
- 17
Choi J.
Yoon NM.
Synthesis
1995,
373
- 18
Myllymaki VT.
Lindvall MK.
Koskinen AMP.
Tetrahedron
2001,
57:
4629
- 19
Tseng S.-L.
Yang T.-K.
Tetrahedron: Asymmetry
2005,
16:
773
- 20
Mercey G.
Bregeon D.
Gaumont A.-C.
Levillain J.
Gulea M.
Tetrahedron
Lett.
2008,
49:
6553
- 21
Meinzer A.
Breckel A.
Thaher BA.
Manicone N.
Otto H.-H.
Helv.
Chim. Acta
2004,
87:
90
- 22
Xu JX.
Chin.
J. Org. Chem.
2003,
23:
1
- 23
Huxtable RJ.
Physiol.
Rev.
1992,
72:
101
- 24
Wickberg B.
Acta
Chem. Scand.
1957,
11:
506
-
25a
Lowik DWPM.
Liskamp RMJ.
Eur. J. Org. Chem.
2000,
1219
-
25b
de Bont DBA.
Moree WJ.
Liskamp RMJ.
Bioorg.
Med. Chem.
1996,
4:
667
-
25c
de Jong R.
Rijkers DTS.
Liskamp RMJ.
Helv. Chim. Acta
2002,
85:
4230
- 26
Carpino LA.
Acc.
Chem. Res.
1987,
20:
401
-
27a
Rodriguez M.
Llinares M.
Doulut S.
Heitz A.
Maranez J.
Tetrahedron Lett.
1991,
32:
923
-
27b
Kokotos G.
Noula C.
J. Org. Chem.
1996,
61:
6994
-
28a
Mondal S.
Fan E.
Synlett
2006,
306
-
28b
Caputo R.
Cassano E.
Longobardo L.
Palumbo G.
Tetrahedron
1995,
51:
12337
- 29
Liane S.-U.
Racero JC.
Antonio JM.-S.
Rosario
S.-G.
James RH.
Maykel P.-G.
Collado IG.
J. Agric. Food Chem.
2009,
57:
2420
- 30
Gamblin DP.
Granier P.
van Kasteren S.
Oldham NJ.
Fairbanks AJ.
Davis BJ.
Angew.
Chem. Int. Ed.
2006,
45:
4007
- 31
Monnee MCF.
Marijne MF.
Brouwer AJ.
Liskamp RMJ.
Tetrahedron
Lett.
2000,
41:
7991
-
32a
Higashiura H.
Morino H.
Matsuura H.
Toyomaki Y.
Ienaga K.
J. Chem. Soc., Perkin Trans.
1
1989,
1479
-
32b
Braghiroli D.
Di Bella M.
Tetrahedron: Asymmetry
1996,
7:
2745
- 33
Higashiura K.
Lenaga K.
J. Org. Chem.
1992,
57:
764
- 34
Gude M.
Piarulli U.
Potenza D.
Salom B.
Gennari C.
Tetrahedron
Lett.
1996,
37:
8589
- 35
Brouwer A.
Monnee MCF.
Liskamp RMJ.
Synthesis
2000,
1579
-
36a
Lowik DWPM.
Liskamp RMJ.
Eur. J. Org. Chem.
2000,
1219
-
36b
Moree WJ.
van der Marcel GA.
Liskamp RMJ.
J. Org.
Chem.
1995,
60:
5157
-
36c
Lowik DWPM.
Mulders SJE.
Cheng Y.
Shao Y.
Liskamp RMJ.
Tetrahedron
Lett.
1996,
37:
8253 ;
see also ref. 31
-
37a
Wang B.
Zhang W.
Zhang L.
Du D.-M.
Liu G.
Xu J.
Eur. J. Org.
2008,
350
-
37b
Xu J.
Tetrahedron: Asymmetry
2002,
13:
1129
-
37c
Xu J.
Synthesis
2004,
276
-
37d
Xu J.
Xu S.
Zhang Q.
Heteroat.
Chem.
2005,
16:
466
- 38
Hu L.
Zhu H.
Du D.-M.
Xu J.
J.
Org. Chem.
2007,
72:
4543
-
39a
Gennari C.
Solam B.
Potenza D.
Williams A.
Angew.
Chem. Int. Ed. Engl.
1994,
33:
2067
-
39b
de Bont DBA.
Dijkstra DH.
den Hratog JAJ.
Liskamp
RMJ.
Bioorg. Med.
Chem. Lett.
1996,
24:
3035
40
General procedure
for 2a-l: A solution of N
β-Fmoc/Z-amino
alkyl iodide 1a-l (1.0
mmol) and thiourea (2.1 g, 3.0 mmol) in anhydrous acetone (10.0
mL) was heated at reflux under an argon atmosphere for 8-10
h. The consumption of the iodide was monitored by TLC. The solvent
was evaporated under vacuum and the isothouronium salt was isolated
as the pure compound by recrystallization from acetone-diethyl
ether.
41
Spectroscopic
data for 2d: IR (KBr): 1703, 1657, 3211 cm-¹; ¹H
NMR (400 MHz, DMSO-d
6): δ = 0.91
(2 × d, J = 6.1
Hz, 6 H), 1.76-2.08 (m, 1 H), 2.98-3.10
(m, 2 H), 3.96-4.01 (m, 1 H), 4.18 (t, J = 6.9 Hz,
1 H), 4.39 (d, J= 4.9
Hz, 2 H), 5.01 (br, 1 H), 6.94-7.77 (m,
8 H), 9.10 (br, 2 H), 9.32 (br, 2 H); ¹³C
NMR (100 MHz, DMSO-d
6): δ = 17.8,
25.4, 30.1, 47.3, 55.2, 66.1, 119.5, 124.8, 125.5, 127.0, 127.9,
141.0, 143.8, 144.2, 156.3, 161.2.
42
General procedure
for 3a-l: Isothiouronium salt 2 (1.0 mmol)
and sodium pyrosulfite (1.5 mmol) were dissolved in CH2Cl2 (10.0
mL) and H2O (2.0 mL) and heated at reflux under argon
atmosphere until completion of reaction. The mixture was diluted
with excess CH2Cl2, and the organic extract
was washed with H2O (2 × 10
mL) and brine (10 mL), and dried over anhydrous sodium sulfate.
Solvent was removed under reduced pressure and the crude product
was purified by column chromatography (silica gel; 100-150 mesh;
EtOAc-hexane, 15%).
43
Selected spectroscopic
data: 3c: IR (KBr): 1711 cm-¹; ¹H NMR
(400 MHz, CDCl3): δ = 2.23 (s, 1 H),
2.81-3.05 (m, 4 H), 3.65 (d, J = 3.5
Hz, 2 H), 3.71-3.97 (m, 1 H), 4.17 (t, J = 6.8 Hz,
1 H), 5.02 (br, 1 H), 6.97-7.67 (m, 13 H); ¹³C NMR
(100 MHz, CDCl3): δ = 30.8, 40.3, 47.1,
52.8, 67.4, 120.4, 125.6, 127.0, 127.8, 128.5, 129.3, 137.0, 141.7, 144.5,
155.8. 3j: IR (KBr): 1694 cm-¹; ¹H
NMR (400 MHz, CDCl3): δ = 0.85 (t, J = 2.8 Hz,
3 H), 0.96 (d, J= 4.2
Hz, 3 H), 1.12-1.35 (m, 2 H), 2.05 (s,
1 H), 2.32-2.45 (m, 1 H), 2.71 (dd, J = 2.7 Hz,
1 H), 3.01 (dd, J = 3.1
Hz, 1 H), 3.56-3.71 (m, 1 H), 4.90 (br,
1 H), 5.05 (s, 2 H), 7.21 (s, 5 H); ¹³C NMR
(100 MHz, CDCl3): δ = 10.5, 13.6, 24.2,
28.6, 39.4, 57.6, 64.8, 127.2, 128.0, 128.8, 137.6, 155.8.
44
General experimental
procedure for 4a-l: H2O2 (30%, 15.0
mL) was dissolved in 98% formic acid (35.0 mL) at 0 ˚C
and the mixture was stirred at this temperature for 1 h to
afford performic acid. Fmoc/Z-amino alkyl thiol in 98% formic
acid (3.0 mL) solution was added dropwise to the performic acid
solution and the resulting reaction mixture was stirred at r.t.
for 1 d. After removal of the solvent, the product was
purified by column chromatography (CHCl3-MeOH,
8:1) to afford N-protected taurines as colorless solids.
45
Selected spectroscopic
data: 4b: IR (KBr): 1708, 1211, 1118 cm-¹; ¹H
NMR (400 MHz, DMSO-d
6): δ = 1.11
(d, J = 6.53
Hz, 3 H), 2.58 (dd, J = 2.9
Hz, 1 H), 2.78 (dd, J = 3.0
Hz, 1 H), 3.25-3.45 (m, 1 H), 4.15 (t, J = 6.8 Hz, 1 H),
4.41 (d, J = 4.8
Hz, 2 H), 6.13 (br, 1 H), 7.02-7.57 (m, 8 H); ¹³C
NMR (100 MHz, DMSO-d
6): δ = 17.5,
41.2, 46.8, 57.5, 64.8, 120.1, 125.2, 126.9, 127.8, 141.1, 142.8,
155.03. 4j: IR (KBr): 1691, 1217, 1170
cm-¹; ¹H NMR (400
MHz, DMSO-d
6): δ = 0.76
(t, J = 2.3
Hz, 3 H), 0.98 (d, J = 5.0
Hz, 3 H), 1.31-1.40 (m, 2 H), 2.12-2.31
(m, 1 H), 2.75 (dd, J = 2.5
Hz, 1 H), 3.03 (dd, J = 3.1
Hz, 1 H), 3.57-3.62 (m, 1 H), 4.68 (s,
2 H), 5.92 (br, 1 H), 6.98 (s, 5 H); ¹³C
NMR (100 MHz, DMSO-d
6): δ = 0.2,
13.6, 24.6, 37.8, 45.8, 55.3, 64.4, 128.1, 128.8, 137.5, 154.8.
46
General procedure
for the synthesis of Fmoc-Xaa-ψ[CH
2
SO
2
Cl](5):
To a suspension of 4 (1.0 mmol) in anhydrous
CH2Cl2
(10.0 mL) at 0 ˚C,
triphosgene (0.7 mmol) and a catalytic amount of DMF were added
and the mixture was stirred overnight. The mixture was diluted with CH2Cl2 (10
mL) and the organic layer was washed with H2O (2 × 10
mL) and brine (10 mL), then dried over anhydrous sodium sulfate.
The solvent was removed under reduced pressure and the crude product
was purified by flash column chromatography (silica gel, 100-150
mesh; EtOAc-hexane, 10%).
47
Spectroscopic
data for 5a: Yield 78%; white solid; mp 151 ˚C.
IR (KBr): 1708 cm-¹; ¹H
NMR (400 MHz, CDCl3): δ = 1.35 (d, J = 6.0 Hz,
3 H), 3.58 (dd, J = 2.8
Hz, 1 H), 3.65 (d, J = 3.5
Hz, 2 H), 3.97-4.08 (m, 1 H), 4.20 (t, J = 6.8 Hz, 1 H),
4.31-4.39 (m, 1 H), 5.11 (br, 1 H), 7.04-7.70
(m, 8 H); ¹³C NMR (100, MHz,
CDCl3): δ = 19.3, 44.0, 46.9, 66.8, 69.1,
119.5, 125.6, 127.2, 128.0, 141.2, 143.8, 155.5.
48
General procedure
for the synthesis of 6: To an ice-cooled solution of N-Fmoc-Xaa-ψ[CH2SO2Cl] (1.0
mmol) in anhydrous CH2Cl2, was added a solution
of amino acid methyl ester in CH2Cl2 (1.0
mmol, obtained by neutralizing the corresponding hydrochloride salt
using zinc dust), followed by Et3N (1.0 mmol). The resulting
suspension was stirred for 6-8 h. After dilution with excess
CH2Cl2 (25 mL), it was washed with 1M HCl
(2 × 10 mL), sat. NaHCO3 (2 × 10
mL), and brine (10 mL), dried over anhydrous sodium sulfate and
the solvent was evaporated under reduced pressure. The crude product
was purified by column chromatography (silica gel, 100-150
mesh; EtOAc-hexane, 30%).
49
Selected spectroscopic
data: 6a: White solid; mp 163 ˚C. ¹H
NMR (400 MHz, DMSO-d
6): δ = 0.98-1.12
(m, 6 H), 1.23 (d, J = 5.9
Hz, 3 H), 2.08-2.15 (m, 1 H), 3.06 (d, J = 4.5 Hz,
1 H), 3.21 (s, 3 H), 3.78 (dd, J = 2.6
Hz, 1 H), 3.98 (t, J = 3.8
Hz, 1 H), 4.01 (dd, J = 3.0
Hz, 1 H), 4.12 (d, J = 5.8 Hz,
2 H), 4.21-4.31 (m, 1 H), 5.06-5.11
(br, 2 H), 7.12-7.69 (m, 8 H); ¹³C
NMR (100 MHz, DMSO-d
6): δ = 7.0,
18.2, 30.6, 37.2, 47.3, 50.3, 63.2, 66.7, 120.2, 125.6, 127.3, 127.8, 141.3,
143.6, 154.6, 170.2. 6c: White solid; mp
143 ˚C. ¹H NMR (400 MHz, DMSO-d
6): δ = 1.17
(d, J = 5.4
Hz, 3 H), 3.10 (s, 3 H), 3.59 (dd, J = 2.2 Hz,
1 H), 3.63-3.75 (m, 1 H), 4.04 (s, 1 H),
4.12 (d, J = 5.6
Hz, 2 H), 5.23-5.64 (br, 2 H), 7.12-7.82
(m, 13 H); ¹³C NMR (100 MHz,
DMSO-d
6): δ = 18.9,
34.5, 50.6, 54.8, 62.7, 66.1, 47.4, 120.6, 125.1, 127.4, 127.1,
141.0, 143.1, 155.0, 170.1.