Subscribe to RSS
DOI: 10.1055/s-2004-835623
Enantioselective Synthesis of Renieramide
Publication History
Publication Date:
22 October 2004 (online)
![](https://www.thieme-connect.de/media/synlett/200415/lookinside/thumbnails/10.1055-s-2004-835623-1.jpg)
Abstract
A highly chemo- and enantioselective PTC alkylation has been developed that allows rapid access to orthogonally protected (S,S)-isodityrosine. Utility of this material in the construction of isodityrosine-containing cyclic peptides is demonstrated by synthesis of the natural product renieramide.
Key words
amino acids - asymmetric alkylation - phase-transfer catalysis - quaternary ammonium salts
- 1
Fry SC. Biochem. J. 1982, 204: 449 - 2
Zhu Z. Synlett 1997, 133 - K13:
-
3a
Kase H.Kaneko M.Yamada K. J. Antibiot. 1987, 40: 450 -
3b
Yasuzawa T.Shirahata K.Sano H. J. Antibiot. 1987, 40: 455 - OF-4949-I-IV:
-
4a
Sano S.Ikai K.Kuroda H.Nakamura T.Obayashi A.Ezure Y.Enomoto H. J. Antibiot. 1986, 39: 1674 -
4b
Sano S.Ikai K.Katayama K.Takesako K.Nakamura T.Obayashi A.Ezure Y.Enomoto H. J. Antibiot. 1986, 39: 1685 - 5 Eurypamides A-D:
Reddy MVR.Harper MK.Faulkner DJ. Tetrahedron 1998, 54: 10649 - Renieramide:
-
6a
Ciasullo L.Casapullo A.Cutignano A.Bifulco G.Debitus C.Hooper J.Gomez-Paloma L.Riccio R. J. Nat. Prod. 2002, 65: 407 -
6b
Itokawa H,Watanabe K,Kawaoto S, andInoue T. inventors; Jpn. Kokai Tokkyo Koho JP 63203671. - For leading references to the syntheses of K13, OF4949-I-IV and the eurypamides see:
-
7a
Ito M.Yamanaka M.Kutsumura N.Nishiyama S. Tetrahedron 2004, 60: 5623 -
7b
Jackson RFW.Perez-Gonzalez M. Chem. Commun. 2000, 2423 -
7c
Bigot A.Bois-Choussy M.Zhu J. Tetrahedron Lett. 2000, 41: 4573 -
7d
Janetka JW.Rich DH. J. Am. Chem. Soc. 1997, 119: 6488 -
7e
Pearson AJ.Zhang PL.Lee K. J. Org. Chem. 1996, 61: 6581 -
7f
Rao AVR.Gurjar MK.Reddy AB.Khare VB. Tetrahedron Lett. 1993, 34: 1657 -
7g
Boger DL.Yohannes D. J. Org. Chem. 1990, 55: 6000 -
7h
Evans DA.Ellman JA. J. Am. Chem. Soc. 1989, 111: 1063 -
7i
Nishiyama S.Suzuki Y.Yamamura S. Tetrahedron Lett. 1989, 30: 379 -
7j
Schmidt U.Weller D.Holder A.Lieberknecht A. Tetrahedron Lett. 1988, 29: 3227 - 8
Lygo B. Tetrahedron Lett. 1999, 40: 1389 -
9a
Lygo B.Allbutt B. Synlett 2004, 326 -
9b
Lygo B.Allbutt B.James SR. Tetrahedron Lett. 2003, 44: 5629 - 11
Reinholtz E.Becker A.Hagenbruch B.Schäfer S.Schmitt A. Synthesis 1990, 1069 -
12a
Lygo B.Andrews BI.Slack D. Tetrahedron Lett. 2003, 44: 9039 -
12b
Lygo B.Andrews BI. Tetrahedron Lett. 2003, 44: 4499 -
12c
Lygo B.Humphreys LD. Tetrahedron Lett. 2002, 43: 6677 -
12d
Lygo B.Andrews BI.Crosby J.Peterson JA. Tetrahedron Lett. 2002, 43: 8015 -
12e
Lygo B.Crosby J.Lowdon TR.Wainwright PG. Tetrahedron 2001, 57: 2391 -
12f
Lygo B.Crosby J.Lowdon TR.Peterson JA.Wainwright PG. Tetrahedron 2001, 57: 2403 -
12g
Lygo B.Crosby J.Peterson JA. Tetrahedron 2001, 57: 6447 -
12h
Lygo B.Wainwright PG. Tetrahedron Lett. 1997, 38: 8595 - 13 For application of a related alkylation to the synthesis of the dityrosine fragment of RP66453 see:
Boisnard S.Carbonnelle A.-C.Zhu J. Org. Lett. 2001, 3: 2061 - 15 For an alternative approach to orthogonally protected (S,S)-isodityrosines see:
Jorgensen KB.Gautun OR. Tetrahedron 1999, 55: 10527 - 16
Kiso Y.Nakamura S.Ito K.Ukawa K.Kitagawa K. J. Chem. Soc., Chem. Commun. 1979, 971
References
The enantioselectivity of this alkylation was determined by chiral-phase HPLC comparison of the product 10 with racemic material generated using n-Bu4NBr as the PTC. Use of catalyst 8 led to similar regioselectivity and yield, but gave 10 with only 50% ee.
14Representative Alkylation-Hydrolysis Procedure (Preparation of 12): A solution of glycine imine 4a (161 mg, 0.54 mmol) in toluene (4 mL) was placed under a nitrogen atmosphere. Iodide 11 (312 mg, 0.45 mmol), catalyst 8 (36 mg 10 mol%) and 9 M aq KOH (400 µL) were added sequentially, and the resulting mixture stirred at r.t. for 18 h. The toluene layer was then separated and the aqueous layer extracted with EtOAc (3 × 2 mL). The combined organics were dried (MgSO4), and concentrated under reduced pressure. The residue was dissolved in Et2O (10 mL), filtered (to remove catalyst), and again concentrated under reduced pressure. The residue was then dissolved in THF (5 mL) and 15% aq citric acid (1.5 mL) added. The mixture was stirred at r.t. for 18 h, then extracted with CHCl3 (4 × 3 mL). The combined organics were washed with 10% aq Na2CO3 (2 × 4 mL), dried (Na2SO4) and concentrated under reduced pressure. The residue was purified by chromatography on silica gel (CHCl3-MeOH, 50:1) to yield the orthogonally protected isodityrosine 12 (269 mg, 85%) as a pale yellow oil. R f = 0.3 (CHCl3-MeOH, 25:1). [α]D +1 (c 0.9, CHCl3). IR (film): νmax = 3376, 2977, 2632, 1714, 1505 cm-1. 1H NMR (500 MHz, CDCl3): δ = 7.34-7.23 (10 H, m, ArH), 7.13 (2 H, d, J = 8.0 Hz, ArH), 6.84 (1 H, s, CHPh2), 6.81 (2 H, d, J = 8.0 Hz, ArH), 6.76 (1 H, d, J = 8.0 Hz, ArH), 6.68 (1 H, d, J = 8.0 Hz, ArH), 6.65 (1 H, s, ArH), 4.97 (1 H, br d, J = 8.0 Hz, NH), 4.68-4.60 (1 H, m, CHN), 3.78 (3 H, s, OCH3), 3.64-3.56 (1 H, m, CHN), 3.04 (1 H, dd, J = 6.0, 14.0 Hz, CHCH a Hb), 2.99-2.95 (2 H, m, CHCHa H b , CHCH a Hb), 2.82 (1 H, dd, J = 8.0, 14.0 Hz, CHCHa H b ), 1.44 [9 H, s, C(CH3)3], 1.40 [9 H, s, C(CH3)3]. 13C NMR (125 MHz, CDCl3): δ = 174.2 (C), 170.9 (C), 156.9 (C), 155.0 (C), 150.0 (C), 144.6 (C), 139.6 (C), 139.4 (C), 131.3 (C), 130.5 (CH), 128.6 (CH), 128.5 (CH), 128.2 (CH), 128.0 (CH), 127.5 (CH), 127.0 (CH), 125.7 (CH), 122.4 (CH), 116.9 (CH), 112.8 (CH), 81.3 (C), 80.0 (C), 78.0 (CH), 56.3 (CH), 56.0 (CH3), 54.5 (CH), 40.3 (CH2), 37.4 (CH2), 28.3 (CH3), 28.1 (CH3). MS (ES+): m/z (%) = 719 (28) [M + Na+], 697 (100) [M + H+], 641 (10) [M - t-Bu + H+], 296 (68). HRMS: m/z calcd for C41H49N2O8 [M + H]+: 697.3489. Found: 697.3528.
17Selected data for synthetic renieramide (2): Mp 185-195 °C (decomp). [α]D -32 (c 0.1, MeOH) (lit. [α]D -30 (c 0.1, MeOH).6 1H NMR (500 MHz, CD3OD): δ = 7.42 (1 H, dd, J = 2.0, 8.0 Hz, ArH), 7.20 (1 H, dd, J = 2.0, 8.0 Hz, ArH), 7.01 (1 H, dd, J = 2.0, 8.0 Hz, ArH), 6.86 (1 H, dd, J = 2.5, 8.0 Hz, ArH), 6.81 (1 H, d, J = 8.0 Hz, ArH), 6.65 (1 H, dd, J = 2.0, 8.0 Hz, ArH), 5.98 (1 H, d, J = 2.0 Hz, ArH), 4.52 (1 H, dd, J = 3.5, 11.5 Hz, CHN), 4.48 (1 H, dd, J = 3.5, 12.5 Hz, CHN), 3.97 (1 H, dd, J = 2.0, 6.0 Hz, CHN), 3.38 (1 H, dd, J = 3.5, 13.0 Hz, CHCH a Hb), 3.15 (1 H, dd, J = 2.0, 15.0 Hz, CHCH a Hb), 2.91 (1 H, dd, J = 6.0, 15.0 Hz, CHCHa H b ), 2.60 (1 H, app. t, J = 12.5 Hz, CHCHa H b ) 1.70-1.62 [2 H, m, CH 2 CH(CH3)2], 1.61-1.51 [1 H, m, CH2CH(CH3)2], 0.95 (3 H, d, J = 6.0 Hz, CH3), 0.93 (3 H, d, J = 6.0 Hz, CH3). 13C NMR (125 MHz, CD3OD): δ = 178.1 (C), 172.7 (C), 169.1 (C), 154.6 (C), 149.8 (C), 147.2 (C), 137.1 (C), 133.0 (CH), 131.7 (CH), 125.0 (2 × CH), 123.1 (CH), 122.7 (CH), 117.2 (CH), 116.9 (CH), 58.1 (CH), 53.7 (CH), 52.1 (CH), 43.6 (CH2), 40.9 (CH2), 37.4 (CH2), 26.0 (CH), 23.8 (CH3), 21.6 (CH3).
18There is a typographical error in the 13C NMR (CD3OD) reported for natural renieramide,6 the CH2 carbon of the l-DOPA fragment occurs at δ = 37.7 ppm (not 43.6). We thank Prof. R. Riccio and Dr. A. Casapullo for kindly providing this information.