Subscribe to RSS
DOI: 10.1055/a-2456-9862
Comparison of the Activity for Theaflavin Production by a Recombinant Polyphenol Oxidase and a Commercial Enzyme
This work was supported by the grant (202201AU070023) from Yunnan Provincial Department of Science and Technology, P. R. of China.

Abstract
Theaflavins (TFs) contribute greatly to the color and flavor of black tea, and have various bioactivities beneficial to human health. This research compared the activity for TF production from tea polyphenols of recombinant polyphenol oxidase (Malus domestica, GenBank login number LT718523.1, MdPPO2) with that of commercial polyphenol oxidase (Agaricus bisporus, AbPPO) in both free and immobilized forms. Enzyme assays by LC-MS revealed that the production of TFs by the commercial enzyme AbPPO was almost five times as high as that of free recombinant MdPPO2. When immobilized on mesoporous silica, however, the activity of recombinant MdPPO2 increased significantly, whereas AbPPO almost lost its activity. In terms of the relative enzyme activity, the immobilized recombinant MdPPO2 had the highest relative enzyme activity, which was more than six times higher than that of free AbPPO. Among the TFs that were produced, TF3 was the most abundant, followed by TF2a, TF1, and TF2b.
Publication History
Received: 07 October 2024
Accepted after revision: 29 October 2024
Accepted Manuscript online:
29 October 2024
Article published online:
04 December 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Matsuo Y, Oowatashi R, Saito Y, Tanaka T. Synlett 2017; 28: 2505
- 2 Mujtaba T, Dou QP. In Vivo 2012; 26: 197
- 3 Zhu Y.-x, Huang H, Tu Y.-y. Int. J. Food Sci. Technol. 2006; 41: 333
- 4 Roberts EA. H, Cartwright RA, Oldschool M. J. Sci. Food Agric. 1957; 8: 72
- 5 Kong X, Xu W, Zhang K, Chen G, Zeng X. Food Biosci. 2023; 54: 102911
- 6 Li D, Dong L, Li J, Zhang S, Lei Y, Deng M, Li J. Bioprocess Biosyst. Eng. 2022; 45: 1047
- 7 Hua J, Wang H, Jiang Y, Li J, Wang J, Yuan H. LWT–Food Sci. Technol. 2021; 13, 110291
- 8 Yabuki C, Yagi K, Nanjo F. Process Biochem. 2017; 55: 61
- 9 Liu K, Chen Q, Hui L, Li RY, Chen L, Bin J, Zheng W, Wang T, Ma Y, Zhao M. Molecules 2023; 28: 1722
- 10 Liu Y, Chen Q, Liu D, Yang L, Hu W, Kuang L, Teng J, Liu Y. Food Sci. Technol. 2022; 42: e117321
- 11 Teng J, Liu Y, Zeng W, Zhou M, Liu Y, Huang Y, Chen Q. Int. J. Food Sci. Technol. 2022; 57: 5621
- 12 Teng J, Gong Z, Deng Y, Chen L, Li Q, Shao Y, Lin L, Xiao W. LWT–Food Sci. Technol. 2017; 84: 263
- 13 Lei S, Xie M, Hu B, Zhou L, Sun Y, Saeeduddin M, Zhang H, Zeng X. Int. J. Biol. Macromol. 2017; 94: 709
- 14 Cai H, Zhong Z, Chen Y, Zhang S, Ling H, Fu H, Zhang L. Int. J. Biol. Macromol. 2023; 240: 124353
- 15 Singh S, Singh D, Kumar S. Process Biochem. 2017; 59: 180
- 16 Wu Y.-L, Pan L.-P, Yu S.-L, Li H.-H. J. Biotechnol. 2010; 145: 66
- 17 Liu J.-w, Huang Y.-y, Ding J, Liu C, Xiao X.-d, Ni D.-j. J. Sci. Food. Agric. 2010; 90: 2490
- 18 Zeng J, Du G, Shao X, Feng K.-N, Zeng Y. Int. J. Biol. Macromol. 2019; 134: 139
- 19 Gao S, Wang Y, Diao X, Lou G, Dai Y. Bioresour. Technol. 2010; 101: 3830
- 20 Escuin PC, García-Bennet A, Ros-Lis JV, Foix AA, Andrés A. Food Chem. 2017; 217: 360
- 21 Sharma K, Bari SS, Singh HP. J. Mol. Catal. B 2009; 56: 253
- 22 Luo S, Hou Y, Hu S.-Q. Ind. Crops Prod. 2023; 200: 116810
- 23 Molitor C, Mauracher SG, Pargan S, Mayer RL, Halbwirth H, Rompel A. Planta 2015; 242: 519
- 24 Deradja A. e, Pretzier M, Kampatsikas I, Barkat M, Rompei A. J. Agric. Food Chem. 2017; 65: 8203