Subscribe to RSS
DOI: 10.1055/a-2500-6758
Synthesis of Silyl Heterocycles Using Transborylation

Abstract
Silicon has been proposed as a nonclassical bioisostere to carbon in a ‘silicon-switch’ approach, however, the synthesis of complex molecules containing silyl heterocycles is still a significant challenge in preparing ‘silicon-switch’ molecules. Transborylation, the σ-bond metathesis between two boron species, has been utilized for the synthesis of complex molecules, in an orthogonal approach to transition-metal catalysis. Here, the use of transborylation catalysis for the synthesis of structurally diverse silyl heterocycles is highlighted.
1 Introduction
2 Transborylation in Catalysis
3 Silyl Heterocycles
4 Synthesis of Silyl Heterocycles Using Transborylation
5 Conclusions and Outlook
Publication History
Received: 04 October 2024
Accepted after revision: 11 December 2024
Accepted Manuscript online:
11 December 2024
Article published online:
17 January 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Schlander M, Hernandez-Villafuerte K, Cheng C.-Y, Mestre-Ferrandiz J, Baumann M. Pharmacoeconomics 2021; 39: 1243
- 2 Lyu J, Irwin JJ, Shoichet BK. Nat. Chem. Biol. 2023; 19: 712
- 3 Warr WA, Nicklaus MC, Nicolaou CA, Rarey M. J. Chem. Inf. Model. 2022; 62: 2021
- 4 Gorgulla C, Boeszoermenyi A, Wang Z.-F, Fischer PD, Coote PW, Padmanabha DasK. M, Malets YS, Radchenko DS, Moroz YS, Scott DA, Fackeldey K, Hoffmann M, Iavniuk I, Wagner G, Arthanari H. Nature 2020; 580: 663
- 5 Lovering F, Bikker J, Humblet C. J. Med. Chem. 2009; 52: 6752
- 6 Lovering F. Med. Chem. Commun. 2013; 4: 515
- 7 Power PP. Nature 2010; 463: 171
- 8 Weetman C, Inoue S. ChemCatChem 2018; 10: 4213
- 9 Dombrowski AW, Gesmundo NJ, Aguirre AL, Sarris KA, Young JM, Bogdan AR, Martin MC, Gedeon S, Wang Y. ACS Med. Chem. Lett. 2020; 11: 597
- 10 Kundu G, Sperger T, Rissanen K, Schoenebeck F. Angew. Chem. Int. Ed. 2020; 59: 21930
- 11 Diehl CJ, Scattolin T, Englert U, Schoenebeck F. Angew. Chem. Int. Ed. 2019; 58: 211
- 12 Kalvet I, Magnin G, Schoenebeck F. Angew. Chem. Int. Ed. 2017; 56: 1581
- 13 Ang NW. J, Buettner CS, Docherty S, Bismuto A, Carney JR, Docherty JH, Cowley MJ, Thomas SP. Synthesis 2018; 50: 803
- 14 Bage AD, Nicholson K, Hunt TA, Langer T, Thomas SP. Synthesis 2023; 55: 62
- 15 Docherty JH, Nicholson K, Dominey AP, Thomas SP. ACS Catal. 2020; 10: 4686
- 16 Meger F, Kwok AC. W, Gilch F, Willcox DR, Hendy AJ, Nicholson K, Bage AD, Langer T, Hunt TA, Thomas SP. Beilstein J. Org. Chem. 2022; 18: 1332
- 17 Nieto-Sepulveda E, Bage AD, Evans LA, Hunt TA, Leach AG, Thomas SP, Lloyd-Jones GC. J. Am. Chem. Soc. 2019; 141: 18600
- 18 Willcox DR, Thomas SP. Beilstein J. Org. Chem. 2023; 19: 325
- 19 Hoshi M, Shirakawa K, Arase A. Chem. Commun. 1998; 1225
- 20 Arase A, Hoshi M, Mijin A, Nishi K. Synth. Commun. 1995; 25: 1957
- 21 Willcox DR, Nichol GS, Thomas SP. ACS Catal. 2021; 11: 3190
- 22 Moreno González A, Nicholson K, Llopis N, Nichol GS, Langer T, Baeza A, Thomas SP. Angew. Chem. Int. Ed. 2022; 61: e202209584
- 23 Phatake RS, Averdunk A, Würtele C, Gellrich U. ACS Catal. 2022; 12: 13961
- 24 Benkeser RA, Nagai Yoichiro, Noe JL, Cunico RF, Gund PH. J. Am. Chem. Soc. 1964; 86: 2446
- 25 Fessenden RJ, Coon MD. J. Org. Chem. 1964; 29: 1607
- 26 Ramesh R, Reddy DS. J. Med. Chem. 2018; 61: 3779
- 27 Barraza SJ, Denmark SE. J. Am. Chem. Soc. 2018; 140: 6668
- 28 Tacke R, Heinrich T, Bertermann R, Burschka C, Hamacher A, Kassack MU. Organometallics 2004; 23: 4468
- 29 Daiss JO, Burschka C, Mills JS, Montana JG, Showell GA, Warneck JB. H, Tacke R. Organometallics 2006; 25: 1188
- 30 Chen F, Liu L, Zeng W. Front. Chem. 2023; 11: 1200494
- 31 Biswas S, Pal S, Uyeda C. Chem. Commun. 2020; 56: 14175
- 32 Buchner KM, Woerpel KA. Organometallics 2010; 29: 1661
- 33 Fang H, Hou W, Liu G, Huang Z. J. Am. Chem. Soc. 2017; 139: 11601
- 34 Gimferrer M, Minami Y, Noguchi Y, Hiyama T, Poater A. Organometallics 2018; 37: 1456
- 35 Ohmura T, Sasaki I, Suginome M. Org. Lett. 2019; 21: 1649
- 36 Sasaki I, Ohmura T, Suginome M. Org. Lett. 2020; 22: 2961
- 37 Wu L, Zhang L, Guo J, Gao J, Ding Y, Ke J, He C. Angew. Chem. Int. Ed. 2024; 63: e202413753
- 38 Yang L, Qin Y, Zhao Z, Zhao D. Angew. Chem. Int. Ed. 2024; 63: e202407773
- 39 Long P.-W, He T, Klare HF. T, Oestreich M. Synlett 2024; 35: 941
- 40 Long P.-W, Wang G, Klare HF. T, Oestreich M. ACS Catal. 2022; 12: 12310
- 41 Rej S, Klare HF. T, Oestreich M. Org. Lett. 2023; 25: 426
- 42 Wrackmeyer B. Coord. Chem. Rev. 1995; 145: 125
- 43 Wrackmeyer B, Kehr G, Süβ J. Chem. Ber. 1993; 126: 2221
- 44 Khan E, Bayer S, Kempe R, Wrackmeyer B. Eur. J. Inorg. Chem. 2009; 4416
- 45 Wrackmeyer B, Tok OL, Kempe R. Inorg. Chim. Acta 2005; 358: 4183
- 46 Willcox DR, Cocco E, Nichol GS, Carlone A, Thomas SP. Angew. Chem. Int. Ed. 2024; 63: e202401737
- 47 Preshlock SM, Plattner DL, Maligres PE, Krska SW, Maleczka JrR. E, Smith MR. III. Angew. Chem. Int. Ed. 2013; 52: 12915
- 48 Kobayashi R, Ishida S, Iwamoto T. Angew. Chem. Int. Ed. 2019; 58: 9425
- 49 Khan E, Wrackmeyer B. Open Chem. 2011; 9: 126
- 50 Khan E, Wrackmeyer B. Turk. J. Chem. 2010; 34: 793
- 51 Ugolotti J, Dierker G, Fröhlich R, Kehr G, Erker G. J. Organomet. Chem. 2011; 696: 1184
- 52 Reaxys can be found at (accessed Oct. 4, 2024): https://www.reaxys.com/
- 53 Moriwaki H, Tian Y.-S, Kawashita N, Takagi T. J. Cheminform 2018; 10: 4
- 54 McInnes L, Healy J, Melville J. ArXiv e-prints 2020;
- 55 Soderquist JA, Colberg JC, Valle LD. J. Am. Chem. Soc. 1989; 111: 4873