RSS-Feed abonnieren
DOI: 10.1055/a-2538-1289
Catalytic Nucleophilic Aromatic Substitution Amination of 2-Aminopyridines with Amines
We thank the National Natural Science Foundation of China (22271235), the Zhejiang Provincial Natural Science Foundation of China (LR24B020001), and the "Pioneer" and "Leading Goose" R&D Program of Zhejiang (2022SDXHDX0006).

Abstract
Nucleophilic aromatic substitution (SNAr) is a powerful strategy for rapid functional group transformations and has been applied extensively in arene functionalization. Electrophilic transition-metal-enabled π-coordination activation has emerged as a unique approach for catalyzing SNAr reactions of benzene derivatives. Traditionally, heteroarenes are considered resistant to π-coordination with transition metals because of preferential binding of the heteroatom to the metal. In our recent work, we demonstrated a π-coordination activation strategy for aminopyridines using a ruthenium(II) catalyst to enable SNAr reactions with amines as nucleophiles. The transient η⁶-pyridine complex serves as an electrophile, facilitating pyridyl C–N bond cleavage, and providing access to a diverse array of pyridylamines. Additionally, this method enables the incorporation of chiral and ¹⁵N-labeled amines, expanding its synthetic utility.
1 Introduction
2 Amination of Aminopyridines via η6-Coordination Catalysis
3 Conclusions and Perspectives
Publikationsverlauf
Eingereicht: 27. Dezember 2024
Angenommen nach Revision: 12. Februar 2025
Accepted Manuscript online:
12. Februar 2025
Artikel online veröffentlicht:
01. April 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257
- 1b Bhutani P, Joshi G, Raja N, Bachhav N, Rajanna PK, Bhutani H, Paul AT, Kumar R. J. Med. Chem. 2021; 64: 2339
- 2a Schlosser M, Mongin F. Chem. Soc. Rev. 2007; 36: 1161
- 2b Murakami K, Yamada S, Kaneda T, Itami K. Chem. Rev. 2017; 117: 9302
- 2c Escolano M, Gaviña D, Alzuet-Piña G, Díaz-Oltra S, Sánchez-Roselló M, Pozo C. Chem. Rev. 2024; 124: 1122
- 2d Bacos PD, Lahdenperä AS. K, Phipps RJ. Acc. Chem. Res. 2023; 56: 2037
- 3a Fier P, Hartwig JF. J. Am. Chem. Soc. 2014; 136: 10139
- 3b Abou-Shehada S, Teasdale MC, Bull SD, Wade CE, Williams JM. ChemSusChem 2015; 8: 1083
- 3c Rodrigo E, Wiechert R, Walter MW, Braje W, Geneste H. Green Chem. 2022; 24: 1469
- 3d Morales-Colón MT, See YY, Lee SJ, Scott PJ. H, Bland DC, Sanford MS. Org. Lett. 2021; 23: 4493
- 3e Fan G.-G, Jiang B.-W, Sang W, Cheng H, Zhang R, Yu B.-Y, Yuan Y, Chen C, Verpoort F. J. Org. Chem. 2021; 86: 14627
- 4a Terrier F, Chatrousse A.-P, Schaal R. J. Org. Chem. 1972; 37: 3010
- 4b Crampton MR, Emokpae TA, Howard JA. K, Isanbor C, Mondal R. Org. Biomol. Chem. 2003; 1: 1004
- 4c Kher S, Chavan K, Medhi S, Sharma R, Deka N. J. Chem. Res. 2011; 1: 84
- 5 Pang JH, Kaga A, Chiba S. Chem. Commun. 2018; 54: 10324
- 6a Schimler SD, Cismesia MA, Hanley PS, Froese RD. J, Jansma MJ, Bland DC, Sanford MS. J. Am. Chem. Soc. 2017; 139: 1452
- 6b Moser D, Duan Y, Wang F, Ma Y, O'Neill MJ, Cornella J. Angew. Chem. Int. Ed. 2018; 57: 11035
- 6c Tang P, Wang W, Ritter T. J. Am. Chem. Soc. 2011; 133: 11482
- 6d Ghiazza C, Faber T, Gómez-Palomino A, Cornella J. Nat. Chem. 2022; 14: 78
- 7a Kündig EP. Transition Metal Arene π-Complexes in Organic Synthesis and Catalysis. Springer; Berlin/Heidelberg: 2004
- 7b Semmelhack MF. In Comprehensive Organometallic Chemistry II . Abel AW, Stone FG. A, Wilkinson G. Pergamon Press; New York: 1995: 979
- 7c Shvydkiy NV, Perekalin DS. Coord. Chem. Rev. 2020; 411: 213238
- 7d Williams LJ, Bhonoah Y, Wilkinson LA, Walton JW. Chem. Eur. J. 2021; 27: 3650
- 8a Otsuka M, Endo K, Shibata T. Chem. Commun. 2010; 46: 336
- 8b Walton JW, Williams JM. J. Chem. Commun. 2015; 51: 2786
- 8c Konovalov AI. Gorbacheva E. O, Miloserdov FM. Grushin V. V. Chem. Commun. 2015; 51: 13527
- 8d Kang Q.-K, Lin Y, Li Y, Shi H. J. Am. Chem. Soc. 2020; 142: 3706
- 8e Kang Q.-K, Lin Y, Li Y, Xu L, Li K, Shi H. Angew. Chem. Int. Ed. 2021; 60: 20391
- 8f Su J, Chen K, Kang Q.-K, Shi H. Angew. Chem. Int. Ed. 2023; 62: e202302908
- 9a Chen K, Kang Q.-K, Li Y, Wu W.-Q, Zhu H, Shi H. J. Am. Chem. Soc. 2022; 144: 1144
- 9b Chen K, Ma Y, Lin Y, Li J.-Y, Shi H. J. Am. Chem. Soc. 2024; 146: 15833
- 10a Khusnutdinova JR, Milstein D. Angew. Chem. Int. Ed. 2015; 54: 12236
- 10b Kwong H, Yeung H.-L, Yeung C.-T, Lee W.-S, Lee C.-S, Wong W.-L. Coord. Chem. Rev. 2007; 251: 2188
- 10c Gibson VC, Redshaw C, Solan GA. Chem. Rev. 2007; 107: 1745
- 11a Chatani N. Directed Metallation . Springer; Berlin/Heidelberg: 2007
- 11b Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
- 11c Colby DA, Bergman RG, Ellman JA. Chem. Rev. 2010; 110: 624
- 11d Jun C-H, Park J.-W, Dreis A, Douglas C. In C–C Bond Activation . Dong G. Springer; Berlin/Heidelberg: 2014: 59
- 12a Chaudret B, Jalon FA. J. Chem. Soc., Chem. Commun. 1988; 711
- 12b Fish RH, Kim HS, Fong RH. Organometallics 1989; 8: 1375
- 12c Davies SG, Shipton MR. J. Chem. Soc., Chem. Commun. 1989; 995
- 12d Davies SG, Shipton MR. J. Chem. Soc., Chem. Commun. 1990; 1780
- 12e Fish RH, Fong RH, Tran A, Baralt E. Organometallics 1991; 10: 1209
- 12f Fish RH, Kim HS, Fong RH. Organometallics 1991; 10: 770
- 12g Davies SG, Shipton MR. J. Chem. Soc., Perkin Trans. 1991; 501
- 12h Davies SG, Shipton MR. J. Chem. Soc., Perkin Trans. 1991; 757
- 12i Davies SG, Edwards AJ, Shipton MR. J. Chem. Soc., Perkin Trans. 1991; 1009
- 12j Standfest-Hauser CM, Mereiter K, Schmid R, Kirchner K. Dalton Trans. 2003; 2329
- 13a Irrgang T, Kempe R. Chem. Rev. 2018; 119: 2524
- 13b Hollmann D, Bähn S, Tillack A, Beller M. Angew. Chem. Int. Ed. 2007; 46: 8291
- 13c Saidi O, Blacker AJ, Farah MM, Marsden SP, Williams JM. J. Angew. Chem. Int. Ed. 2009; 48: 7375
- 13d Yin Z, Zeng H, Wu J, Zheng S, Zhang G. ACS Catal. 2016; 6: 6546