Synlett DOI: 10.1055/a-2550-1785
letter
Emerging Trends in Organic Chemistry: A Focus on India
Tetrahydrofuran Ring Construction through Tandem Iodocyclizations: Synthesis of Hagen’s Gland Lactones, a Pheromone of Idea leuconoe , an Oxylipid, and Related Compounds
U. Nookaraju
a
Division of Organic Chemistry, CSIR-NCL (National Chemical Laboratory), Pune 411008, India
b
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
,
Shivam S. Danve
a
Division of Organic Chemistry, CSIR-NCL (National Chemical Laboratory), Pune 411008, India
,
Pradeep Kumar∗
a
Division of Organic Chemistry, CSIR-NCL (National Chemical Laboratory), Pune 411008, India
b
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
› Author Affiliations U.N.R thanks UGC, New Delhi for a senior research fellowship.This work was supported by the CSIR-Emeritus Scientist Scheme [Grant No. 21(1142)/22/EMR-II], New Delhi. Financial support for S.S.D. as a JRF under the scheme is gratefully acknowledged.
Dedicated to Professor Richard R. Schmidt on the occasion of his 90th birthday
Abstract
A simple and efficient common route was developed for the syntheses of tetrahydrofuran-ring-containing natural products such as Hagen’s gland lactones and their epimers, a pheromone of the butterfly Idea leuconoe , an oxylipid, and some valuable synthons. Brown’s allylation, cross-metathesis, iodocyclization, and a tandem aminoxylation/allylation were employed as key steps in the syntheses.
Key words
tetrahydrofurans -
iodocyclization -
Hagen’s gland lactone -
oxylipids -
pheromones -
cross-metathesis
Supporting Information
Supporting information for this article is available online at https://doi.org/10.1055/a-2550-1785.
Supporting Information
Publication History
Received: 30 January 2025
Accepted after revision: 03 March 2025
Accepted Manuscript online: 03 March 2025
Article published online: 10 April 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
References
1a
Zhou Z.-F,
Menna M,
Cai Y.-S,
Guo Y.-W.
Chem. Rev. 2015; 115: 1543
1b
Bermejo A,
Figadère B,
Zafra-Polo M.-C,
Barrachina I,
Estornell E,
Cortes D.
Nat. Prod. Rep. 2005; 22: 269
1c
Rupprecht JK,
Hui YH,
McLaughlin JL.
J. Nat. Prod. 1990; 53: 237
1d
Alali FQ,
Liu X.-X,
McLaughlin JL.
J. Nat. Prod. 1999; 62: 504
2a
Lorente A,
Lamariano-Merketegi J,
Albericio F,
Álvarez M.
Chem. Rev. 2013; 113: 4567
2b
Li N,
Shi Z,
Tang Y,
Chen J,
Li X.
Beilstein J. Org. Chem. 2008; 4: 48
2c
Jalce G,
Franck X,
Figadère B.
Tetrahedron: Asymmetry 2009; 20: 2537
2d
Wolfe JP,
Hay MB.
Tetrahedron 2007; 63: 261
3a
Hagen KL.
Proc. Hawaii. Entomol. Soc. 1953; 15: 115
3b
Williams HJ,
Wong M,
Wharton RA,
Vinson SB.
J. Chem. Ecol. 1988; 14: 1727
3c
Buckingham GR.
Ann. Entomol. Soc. Am. 1968; 61: 233
4a
Paddon-Jones GC,
McErlean CS. P,
Hayes P,
Moore CJ,
König WA,
Kitching WA.
J. Org. Chem. 2001; 66: 7487
4b
Gadikota RR,
Callam CS,
Lowary TL.
J. Org. Chem. 2001; 66: 9046
4c
Boukouvalas J,
Fortier G,
Radu II.
J. Org. Chem. 1998; 63: 916
4d
Lee E,
Yoo S.-K,
Choo Y.-S,
Cheon H.-S,
Chong YH.
Tetrahedron Lett. 1997; 38: 7757
4e
Osumi KH,
Sugimura K.
Tetrahedron Lett. 1995; 36: 5789
5a
Paddon-Jones GC,
Moore CJ,
Brecknell DJ,
König WA,
Kitching W.
Tetrahedron Lett. 1997; 38: 3479
5b
Mereyala HB,
Gadikota RR.
Chem. Lett. 1999; 273
5c
Mereyala HB,
Gadikota RR.
Tetrahedron: Asymmetry 2000; 11: 743
5d
Mereyala HB,
Gadikota RR,
Sunder KS,
Shailaja S.
Tetrahedron 2000; 56: 3021
5e
Banda G,
Chakravarthy IE.
Tetrahedron: Asymmetry 2006; 17: 1684
5f
Agrawal D,
Sriramurthy V,
Yadav VK.
Tetrahedron Lett. 2006; 47: 7615
5g
Paz-Morales E,
Ruth M,
Sartillo-Piscil F.
Carbohydr. Res. 2009; 344: 1123
5h
Fernandes RA,
Pullaiah K.
J. Org. Chem. 2012; 77: 9357
5i
Chaudhari DA,
Kattanguru P,
Fernandes RA.
Tetrahedron: Asymmetry 2014; 25: 1022
5j
Gharpure SJ,
Nanda LN,
Shukla MK.
Eur. J. Org. Chem. 2011; 6632
5k
Roy A,
Bhat BA,
Lepore SD.
Org. Lett. 2015; 17: 900
5l
Kauloorkar S,
Jha V,
Jogdand G,
Kumar P.
RSC Adv. 2015; 5: 61000
5m
Chowhan LR,
Singh V,
Lakshmi SR.
ChemistrySelect 2019; 4: 13601
5n
Lee DI,
Shin D,
Hwang Y,
Lee K,
Seoand S.-Y,
Kim H.
RSC Adv. 2014; 4: 52637
5o
Lone AM,
Bhat BA,
Shah WA,
Mehta G.
Tetrahedron Lett. 2014; 55: 3610
6a
Brown HC,
Jadhav PK.
J. Am. Chem. Soc. 1983; 105: 2092
6b
Racherla US,
Brown HC.
J. Org. Chem. 1991; 56: 401
6c
Ramachandran PV,
Reddy MV. R,
Brown HC.
Tetrahedron Lett. 2000; 41: 583
7a
Chatterjee AK,
Choi T.-L,
Sanders DP,
Grubbs RH.
J. Am. Chem. Soc. 2003; 125: 11360
7b
Hoveyda AH,
Lombardi PJ,
O’Brien RV,
Zhugralin AR.
J. Am. Chem. Soc. 2009; 131: 8378
7c
Connon SJ,
Blechert S.
Angew. Chem. Int. Ed. 2003; 42: 1900
8a
Kundooru S,
Das P,
Meena S,
Kumar V,
Siddiqi MI,
Datta D,
Shaw AK.
Org. Biomol. Chem. 2015; 13: 8241
8b
Bedford SB,
Bell KE,
Bennett F,
Hayes CJ,
Knight DW,
Shaw DE.
J. Chem. Soc., Perkin Trans. 1 1999; 2143
8c
Ajoy BK,
Manuel SL,
Elvia CV. C.
Curr. Org. Chem. 2011; 15: 1058
8d
Mphahlele MJ.
Molecules 2009; 14: 4814
8e
Snider BB,
Johnston M.
Tetrahedron Lett. 1985; 26: 5497
9
Mori N,
Togo H.
Tetrahedron 2005; 61: 5915
10a
Tiecco M,
Testaferri L,
Tingoli M,
Bagnoli L,
Santi C.
Synlett 1993; 798
10b
Liu H,
Tan C.-H.
Tetrahedron Lett. 2007; 48: 8220
10c
Bajracharya GB,
Koranne PS,
Nadaf RN,
Mohamed Gabr RK,
Takenaka K,
Takizawa S,
Sasai H.
Chem. Commun. 2010; 46: 9064 ; and references cited therein
11a
Schulz S,
Nishida R.
Bioorg. Med. Chem. 1996; 4: 341
11b
Schulz S.
Chem. Commun. 1999; 1239
11c
Kondekar NB,
Kumar P.
Org. Lett. 2009; 11: 2611
11d
Yadav JS,
Narayana Reddy PA,
Ather H,
Suman Kumar A,
Prasad AR,
Subba Reddy BV,
Khazim AA.
Synthesis 2012; 44: 579
12a
Phae-nok S,
Kuhakarn C,
Pohmakotr M,
Reutrakul V,
Soorukram D.
Org. Biomol. Chem. 2015; 13: 11087
12b
Schulz S,
Hötling S.
Nat. Prod. Rep. 2015; 32: 1042
12c
Browne DM,
Niyomura O,
Wirth T.
Org. Lett. 2007; 9: 3169
13
Zhong G.
Chem. Commun. 2004; 606
14
Kim S.-G.
Synthesis 2009; 2418
15a
García C,
Martín T,
Martín VS.
J. Org. Chem. 2001; 66: 1420
15b
Roy S,
Spilling CD.
Org. Lett. 2012; 14: 2230 ; and references cited therein
16
Fernandes RA,
Pathare RS,
Gorve DA.
Chem. Asian J. 2020; 15: 2815
17
Singh AA,
Rowley JA,
Schwartz BD,
Kitching W,
De Voss JJ.
J. Org. Chem. 2014; 79: 7799
18
Nookaraju U,
Kumar P.
RSC Adv. 2015; 5: 63311
19
Fernandes RA,
Gorve DA,
Jha AK.
Chem. Commun. 2023; 59: 2007
20
(3aR ,5R ,6aR )-5-Butyltetrahydrofuro[3,2-b ]furan-2(3H )-one (1)
NaHCO3 (135 mg, 1.61 mmol, 3.0 equiv) and I2 (204 mg, 1.61 mmol, 3.0 equiv) were sequentially added to a solution of 13a (100 mg, 0.54 mmol) in MeCN (10 mL) at 0 °C, and the mixture was stirred for 6 h then cooled to rt. The reaction was quenched with aq Na2 S2 O3 , and the aqueous layer was extracted with EtOAc (2 × 5 mL). The combined organic layers were washed with H2 O and brine, dried (Na2 SO4 ), and concentrated. The residue was purified by column chromatography [silica gel, PE–EtOAc (85:15)] to give a colorless oil; yield: 82.1 mg (83%). [Further elution (PE–EtOAc, 84:16) gave the epimer 3 ; yield: 6.9 mg (7%)]; [α]D
25 +49.5 (c 1.0, CHCl3 ) [Lit.5g +50.9 (c 1.0, CHCl3 )].
IR (neat): 2930, 2864, 1781, 1459, 1345, 1180, 1065 cm–1 . 1 H NMR (200 MHz, CDCl3 ): δ = 5.13 (t, J = 4.7 Hz, 1 H), 4.84–4.79 (m, 1 H), 4.07 (dt, J = 6.3, 10.8 Hz, 1 H), 2.77 (dd, J = 6.6, 18.8 Hz, 1 H), 2.65 (d, J = 18.6 Hz, 1 H), 2.38 (dd, J = 4.6, 13.7 Hz, 1 H), 1.71–1.65 (m, 1 H), 1.57–1.43 (m, 2 H), 1.43–1.29 (m, 4 H), 0.90 (t, J = 7.0 Hz, 3 H). 13 C NMR (125 MHz, CDCl3 ): δ = 176.1, 84.9, 78.2, 77.3, 38.8, 36.6, 34.3, 28.1, 22.6, 13.9. HRMS (ESI): m/z [M + Na]+ calcd for C10 H16 NaO3 : 207.0992; found: 207.0994.