Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2019; 30(10): 1174-1177
DOI: 10.1055/s-0037-1611942
DOI: 10.1055/s-0037-1611942
cluster
Electrochemical Synthesis of 2-Hydroxy-para-terphenyls by Dehydrogenative Anodic C–C Cross-Coupling Reaction
S.R.W. thanks the DFG (Wa1276/14-1) for financial support. S.L. and S.R.W. acknowledge the Carl-Zeiss Foundation for granting a fellowship and the research network ELYSION, respectively.Further Information
Publication History
Received: 14 November 2018
Accepted after revision: 04 December 2018
Publication Date:
08 January 2019 (online)
Published as part of the Cluster Electrochemical Synthesis and Catalysis
Abstract
The anodic C–C cross-coupling reaction provides fast access to a wide range of bi- and terarylic scaffolds by electrochemically mediated arylation reactions. Herein, a metal- and reagent-free electrosynthetic protocol for the synthesis of nonsymmetrical 2-hydroxy-para-teraryl derivatives is presented for the first time. It is scalable, easy to conduct, and allows the use of a broad variety of different functional groups.
Key words
C–C coupling - protecting groups - electrochemistry - C–H activation - arylation - terphenylsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1611942.
- Supporting Information
-
References and Notes
- 1a Suzuki A. Angew. Chem. Int. Ed. 2011; 50: 6722; Angew. Chem. 2011, 123, 6854
- 1b Hussain I, Singh T. Adv. Synth. Catal. 2014; 356: 1661
- 1c Grzybowski M, Skonieczny K, Butenschön H, Gryko DT. Angew. Chem. Int. Ed. 2013; 52: 9900 ; Angew. Chem. 2013, 125, 10084
- 2a Boudier A, Breuil P.-AR, Magna L, Olivier-Bourbigou H, Braunstein P. Dalton Trans. 2015; 12995
- 2b Franke R, Selent D, Börner A. Chem. Rev. 2012; 112: 5675
- 2c Vidal-Ferran A, Mon I, Bauzá A, Frontera A, Rovira L. Chem. Eur. J. 2015; 21: 11417
- 3 von Nussbaum F, Brands M, Hinzen B, Weigand S, Häbich D. Angew. Chem. Int. Ed. 2006; 45: 5072 ; Angew. Chem. 2006, 118, 5194
- 4 Shukla R, Lindeman SV, Rathore R. Chem. Commun. 2009; 5600
- 5a Albrecht M, Schneider M. Eur. J. Inorg. Chem. 2002; 1301
- 5b Albrecht M, Schneider M. Synthesis 2000; 1557
- 6 Peters M, Trobe M, Tan H, Kleineweischede R, Breinbauer R. Chem. Eur. J. 2013; 19: 2442
- 7 Koch F, Berkefeld A, Schubert H, Grauer C. Chem. Eur. J. 2016; 22: 14640
- 8 Koch F, Schubert H, Sirsch P, Berkefeld A. Dalton Trans. 2015; 13315
- 9 Buss JA, Edouard GA, Cheng C, Shi J, Agapie T. J. Am. Chem. Soc. 2014; 136: 11272
- 10a Gruza MM, Chambron J.-C, Espinosa E, Aubert E. Eur. J. Org. Chem. 2009; 6318
- 10b Dobrounig P, Trobe M, Breinbauer R. Monatsh. Chem. 2017; 148: 3
- 10c Yamaguchi M, Kimura T, Shinohara N, Manabe K. Molecules 2013; 18: 15207
- 11 Huguet N, Lebœuf D, Echavarren AM. Chem. Eur. J. 2013; 19: 6581
- 12a Choi J, MacArthur AH. R, Brookhart M, Goldman AS. Chem. Rev. 2011; 111: 1761
- 12b Albrecht M, van Koten G. Angew. Chem. Int. Ed. 2001; 40: 3750 ; Angew. Chem. 2001, 113, 3866
- 13 Waldvogel SR, Lips S, Selt M, Riehl B, Kampf CJ. Chem. Rev. 2018; 118: 6706
- 14a Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
- 14b Wiebe A, Gieshoff T, Möhle S, Rodrigo E, Zirbes M, Waldvogel SR. Angew. Chem. Int. Ed. 2018; 57: 5594 ; Angew. Chem. 2018, 130, 5694
- 15a Wiebe A, Schollmeyer D, Dyballa KM, Franke R, Waldvogel SR. Angew. Chem. Int. Ed. 2016; 55: 11801 ; Angew. Chem. 2016, 128, 11979
- 15b Riehl B, Dyballa K, Franke R, Waldvogel S. Synthesis 2016; 49: 252
- 15c Elsler B, Schollmeyer D, Dyballa KM, Franke R, Waldvogel SR. Angew. Chem. Int. Ed. 2014; 53: 5210 ; Angew. Chem. 2014, 126, 5311
- 16a Kirste A, Elsler B, Schnakenburg G, Waldvogel SR. J. Am. Chem. Soc. 2012; 134: 3571
- 16b Kirste A, Schnakenburg G, Stecker F, Fischer A, Waldvogel SR. Angew. Chem. Int. Ed. 2010; 49: 971 ; Angew. Chem. 2010, 122, 983
- 17 Elsler B, Wiebe A, Schollmeyer D, Dyballa KM, Franke R, Waldvogel SR. Chem. Eur. J. 2015; 21: 12321
- 18 Schulz L, Enders M, Elsler B, Schollmeyer D, Dyballa KM, Franke R, Waldvogel SR. Angew. Chem. Int. Ed. 2017; 56: 4877 ; Angew. Chem. 2017, 129, 4955
- 19 Wiebe A, Lips S, Schollmeyer D, Franke R, Waldvogel SR. Angew. Chem. Int. Ed. 2017; 56: 14727 ; Angew. Chem. 2017, 129, 14920
- 20 Dahms B, Franke R, Waldvogel SR. ChemElectroChem 2018; 5: 1249
- 21 Lips S, Frontana-Uribe BA, Dörr M, Schollmeyer D, Franke R, Waldvogel SR. Chem. Eur. J. 2018; 24: 6057
- 22 Lips S, Schollmeyer D, Franke R, Waldvogel SR. Angew. Chem. Int. Ed. 2018; 57: 13325 ; Angew. Chem. 2018, 130, 13509
- 23 Lips S, Wiebe A, Elsler B, Schollmeyer D, Dyballa KM, Franke R, Waldvogel SR. Angew. Chem. Int. Ed. 2016; 55: 10872 ; Angew. Chem. 2016, 128, 11031
- 24 Organic Electrochemistry . Speiser B, Hammerich O. CRC Press Taylor & Francis Group; Boca Raton: 2016
- 25 Horn EJ, Rosen BR, Baran PS. ACS Cent. Sci. 2016; 2: 302
- 26a Möhle S, Zirbes M, Rodrigo E, Gieshoff T, Wiebe A, Waldvogel SR. Angew. Chem. Int. Ed. 2018; 57: 6018 ; Angew. Chem. 2018, 130: 6124
- 26b Frontana-Uribe BA, Little RD, Ibanez JG, Palma A, Vasquez-Medrano R. Green Chem. 2010; 12: 2099
- 27 Wiebe A, Riehl B, Lips S, Franke R, Waldvogel SR. Sci. Adv. 2017; 3: eaao3920
- 28 Hollóczki O, Berkessel A, Mars J, Mezger M, Wiebe A, Waldvogel SR, Kirchner B. ACS Catal. 2017; 7: 1846
- 29 Colomer I, Chamberlain AE. R, Haughey MB, Donohoe TJ. Nat. Rev. Chem. 2017; 1: 88
- 30 Synthesis of Phenol Arene (3, AB); General Procedure 1,4-Dimethoxybenzene (0.69 g, 5.00 mmol, 1.0 equiv), 4-(1,1-dimethylethyl)-2-methylphenol (1.64 g, 10.0 mmol, 2.0 equiv) and MTBS (0.70 g, 0.09 M) were dissolved in HFIP (25 mL) and transferred to the electrolysis cell. After electrolysis, the solvent was recovered by distillation. Short-path distillation of the residue yielded the desired product as a yellow oil.
- 31a Sala T, Sargent MV. J. Chem. Soc., Perkin Trans. 1 1979; 2593
- 31b Greene TW, Wuts PG. M. Greene’s Protective Groups in Organic Synthesis . Wiley-Interscience; Hoboken, NJ: 2007
- 32 Introduction of Protecting Group (4, ABPG) 2-Hydroxy-5-methyl-2′,3,4′-trimethoxybiphenyl (4.00 g, 13.3 mmol, 1.0 equiv) was dissolved in anhydrous DMF in a 250 mL round-bottom flask. Sodium hydride (60% dispersion, 0.72 g, 17.29 mmol, 1.3 equiv) was added under nitrogen atmosphere. After 1 hour stirring at room temperature, 2-bromopropane (3.27 g, 26.6 mmol, 2.0 equiv) was added. The reaction mixture was stirred for 3 h at room temperature. The crude product was purified as described in Ref. 34.
- 33 Gütz C, Klöckner B, Waldvogel SR. Org. Process Res. Dev. 2015; 20: 26
- 34 Synthesis of Teraryl (5a, ABPGA′); General Procedure 2,4-Dimethylphenol (A′) (0.61 g, 5.00 mmol, 1.0 equiv), 2′,5′-dimethoxy-2-(1-methylethoxy)-3-methyl-5-(1,1-dimethylethyl)biphenyl (ABPG ) (4.28 g, 12.5 mmol, 2.5 equiv) and MTBS (0.70 g) were dissolved in HFIP (25 mL) and transferred into a beaker type cell. Electrolysis was carried out at room temperature with a current density of 5.2 mA/cm². After electrolysis (2.5 F per A′), the solvent was recovered by distillation. Column chromatography of the residue (cyclohexane/ethyl acetate = 99:0.5 → 99:1 → 95:5 → 90:10, total solvent volume: 5 L; column 40 mm × 150 mm) gave the product 5a (1.09 g, 2.36 mmol, 47%) as a yellow oil. 1H NMR (400 MHz, CDCl3): δ = 1.02 (s, 3 H), 1.03 (s, 3 H), 1.37 (s, 9 H), 2.36 (s, 6 H), 2.37 (s, 3 H), 3.78 (sep, 1 H), 3.82 (s, 3 H), 3.88 (s, 3 H), 6.47 (br s, 1 H), 6.99 (s, 1 H), 7.04 (d, J = 6.0 Hz, 2 H), 7.14 (s, 1 H), 7.22–7.25 (m, 2 H); 13C NMR (101 MHz, CDCl3): δ = 16.55, 17.47, 20.63, 22.56, 31.58, 34.23, 56.48, 57.06, 75.35, 115.70, 115.93, 125.81, 126.41, 126.84, 126.94, 127.46, 128.98, 129.45, 129.67, 130.28, 131.06, 131.45, 145.01, 148.88, 149.70, 151.76, 151.94. HRMS (ESI+): m/z [M+Na+] calcd. for C30H38O4: 485.2657; found: 485.2678.
- 35 Banwell MG, Flynn BL, Stewart SG. J. Org. Chem. 1998; 63: 9139