References
-
For reviews, see:
-
2a
Martin RE.
Diederich F.
Angew. Chem. Int. Ed.
1999,
38:
1350
-
2b
Watson MD.
Fechtenkotter A.
Mullen K.
Chem. Rev.
2001,
101:
1267
-
For reviews, see:
-
3a
Metal-Catalyzed Cross-Coupling Reactions
Diederich F.
Stang PJ.
Wiley-VCH;
Weinheim:
1998.
-
3b
Cross-Coupling Reactions: A Practical Guide, In Top. Curr. Chem.
Vol. 219:
Miyaura N.
Springer-Verlag;
Berlin-Heidelberg:
2002.
-
3c
J. Organomet. Chem. Vol. 653 (Special Issue), 30 Years of Cross-Coupling Reaction
Tamao K.
Negishi E.-i.
Hiyama T.
2002.
-
Monoarylating cross-couplings affording halobiaryls have been performed with arenes bearing different halogeno (or pseudo-halogeno) groups. For examples, see:
-
4a
Kamikawa T.
Hayashi T.
Tetrahedron Lett.
1997,
38:
7087
-
4b
Kamikawa T.
Hayashi T.
J. Org. Chem.
1998,
63:
8922
-
4c
Sengupta S.
Sadhukhan SK.
Tetrahedron Lett.
1998,
39:
715
-
Monoalkylation of 1-[2,6-bis(trifluoromethanesulfonyl-oxy)phenyl]naphthalene has been achieved with high chemo- and stereoselectivity via Grignard cross-coupling, see:
-
5a
Hayashi T.
Niizuma S.
Kamikawa T.
Suzuki N.
Uozumi Y.
J. Am. Chem. Soc.
1995,
117:
9101
-
5b
Kamikawa T.
Uozumi Y.
Hayashi T.
Tetrahedron Lett.
1996,
37:
3161
-
For reviews, see:
-
6a
Modern Arene Chemistry
Astruc D.
Wiley-VCH;
Weinheim:
2002.
-
6b
Suzuki A.
J. Organomet. Chem.
1999,
576:
147
-
6c
Miyaura N.
Suzuki A.
Chem. Rev.
1995,
95:
2457
-
6d
Suzuki Coupling, Organic Syntheses via Boranes
Vol. 3:
Suzuki A.
Brown HC.
Aldrich;
Milwaukee:
2003.
-
For studies on polymer-supported palladium catalysts from the author’s group, see the following. π-Allylic substitution:
-
7a
Uozumi Y.
Danjo H.
Hayashi T.
Tetrahedron Lett.
1997,
38:
3557
-
7b
Danjo H.
Tanaka D.
Hayashi T.
Uozumi Y.
Tetrahedron
1999,
55:
14341
-
Cross-coupling:
-
7c
Uozumi Y.
Danjo H.
Hayashi T.
J. Org. Chem.
1999,
64:
3384
-
Carbonylation reaction:
-
7d
Uozumi Y.
Watanabe T.
J. Org. Chem.
1999,
64:
6921
-
Suzuki-Miyaura coupling:
-
7e
Uozumi Y.
Nakai Y.
Org. Lett.
2002,
4:
2997
-
Heck reaction:
-
7f
Uozumi Y.
Kimura T.
Synlett
2002,
2045
-
Sonogashira reaction:
-
7g
Uozumi Y.
Kobayashi Y.
Heterocycles
2003,
59:
71
-
Asymmetric alkylation:
-
7h
Uozumi Y.
Shibatomi K.
J. Am. Chem. Soc.
2001,
123:
2919
-
Asymmetric amination:
-
7i
Uozumi Y.
Tanaka H.
Shibatomi K.
Org. Lett.
2004,
6:
281
-
Asymmetric catalysis:
-
7j
Hocke H.
Uozumi Y.
Synlett
2002,
2049
-
7k
Hocke H.
Uozumi Y.
Tetrahedron
2003,
59:
619
-
7l
Hocke H.
Uozumi Y.
Tetrahedron
2004,
60:
9297
-
Asymmetric cycloisomerization:
-
7m
Nakai Y.
Uozumi Y.
Org. Lett.
2005,
7:
291
1 Present address: Graduate school of Engineering, Nagoya University, Nagoya, Japan.
8 The σ/σ+ value of bromo and phenyl groups: σµ/σµ
+ (Br) = +0.391/+0.405; σπ/σπ
+ (Br) = +0.232/+0.150; σµ/σµ
+ (Ph) = +0.06/+0.109; σπ/σπ
+ (Ph) = +0.01/-0.179.
9 Argo Gel NH2 (Φ = 130 mm, loading value = 0.3 mmol/g) was used as a polymer support.
10
General Procedure for Monoarylation of Dibromoarenes.
A mixture of the dibromoarene 1 (0.4 mmol), the arylboronic acid 2 (0.4 mmol), 1 mol% palladium of 5 (4 µmol Pd), 8.4 mg of PPh3 (32 µmol), and 40 µL of toluene in 4 mL of 2 M aqueous solution of K2CO3 was refluxed for 24 h. After being cooled, the mixture was filtered and collected resin beads were extracted with EtOAc. The GC yield and the ratio of 3:4 were determined by GC-MS analysis (internal standard: biphenyl) of the organic extract, and an analytically pure product was isolated by silica gel chromatography.
11 During the reaction, generation of precipitates on the resin surface was observed microscopically.
12 CAS Registry numbers of biaryl products: 3aA, 844856-52-6; 3aB, 844856-54-8; 3aD, 337535-27-0; 3bC, 251320-87-3; 3cC, 106475-19-8; 3iA, 675590-28-0.
13
3-Bromo-2′-methylbiphenyl (3aC).
Compound 3aC was not isolated as an analytically pure sample. Characterization of 3aC was performed by GC-MS analysis: MS: m/z = 248, 246 [M+], 167 [M - Br] (base peak), 152, 139, 115, 82.
14
1-(3′-Bromobiphen-3-yl)ethanone (3aE).
1H NMR (400 MHz, CDCl3): δ = 8.12 (s, 1 H), 7.94 (d, J = 6.8 Hz, 1 H), 7.73 (d, J = 8.0 Hz, 2 H), 7.48-7.55 (m, 3 H), 7.31 (t, J = 8.0 Hz, 1 H), 2.65 (s, 3H). 13C NMR (100 MHz, CDCl3): δ = 197.4, 142.0, 139.9, 137.4, 131.4, 130.5, 130.2, 130.0, 129.0, 127.6, 126.6, 125.6, 122.8, 26.8. MS: 274, 259, 231, 152, 76.
15
1-(4′-Bromobiphen-3-yl)ethanone (3cE).
Compund 3cE was not isolated as an analytically pure sample. Characterization of 3cE was performed by GC-MS analysis: MS: m/z = 276, 274 [M+], 261, 259 [M - CH3], 233, 231 [M - COCH3], 152 [M - COCH3-Br] (base peak), 126, 76.
16
4-Bromo-2,5,4′-trimethylbiphenyl (3dA).
1H NMR (400 MHz, CDCl3): δ = 7.42 (s, 1 H), 7.20 (d, J = 8.0 Hz, 2 H), 7.15 (d, J = 8.0 Hz, 2 H), 7.06 (s, 1H), 2.38 (s, 3 H), 2.36 (s, 3 H), 2.19 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 140.8, 137.7, 136.5, 134.7, 134.5, 133.5, 133.4, 131.9 (2 C), 128.7 (2 C), 123.1, 22.4, 21.3, 19.8. MS: m/z = 274, 195, 180, 165, 89.
17
1-Bromo-4-(4-methylphenyl)naphthalene (3eA).
1H NMR (400 MHz, CDCl3): δ = 8.31 (d, J = 8.4 Hz, 1 H), 7.89 (d, J = 8.4 Hz, 1 H), 7.79 (d, J = 7.6 Hz, 1 H), 7.57 (t, J = 6.8 Hz, 1 H), 7.44 (t, J = 6.8 Hz, 1 H), 7.32 (d, J = 8.0 Hz, 2 H), 7.27 (d, J = 8.4 Hz, 2 H), 7.22 (d, J = 7.6 Hz, 1 H), 2.43 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 140.2, 137.1, 136.8, 132.8, 131.9, 129.7, 129.3, 128.9, 127.3, 127.0 (2 C), 126.6, 126.5, 121.9, 21.4. MS: m/z = 296, 215, 202, 189, 107, 94.
18
3-Bromo-5-fluoro-4′-methylbiphenyl (3fA).
1H NMR (400 MHz, CDCl3): δ = 7.49-7.50 (m, 1 H), 7.41 (d, J = 8.0 Hz, 2 H), 7.24 (d, J = 8.0 Hz, 2 H), 7.16-7.21 (m, 2 H), 3.14 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 164.0, 161.5, 144.7, 144.6, 138.3, 135.6 (2 C), 130.0, 126.8, 125.8, 125.7, 122.8, 122.7, 117.3, 117.1, 112.8, 112.6, 21.2. MS: m/z = 264, 183, 165, 91.
19
3,5-Dibromo-4′-methylbiphenyl (3gA).
1H NMR (500 MHz, CDCl3): δ = 7.58-7.61 (m, 3 H), 7.38-7.40 (m, 2 H), 7.21-7.24 (m, 2 H), 2.38 (s, 3 H). 13C NMR (125 MHz, CDCl3): δ = 144.5, 138.2, 135.2, 123.0, 129.5, 128.5, 126.7, 123.0, 21.3. MS: m/z = 326, 245, 165, 139, 115, 82.
20
2-Bromo-6-(4-methylphenyl)pyridine (3hA).
1H NMR (500 MHz, CDCl3): δ = 7.88 (d, J = 8.5 Hz, 2 H), 7.64 (d, J = 7.0 Hz, 1 H), 7.55 (t, J = 7.5 Hz, 1 H), 7.36 (d, J = 8.0 Hz, 1 H), 7.26 (d, J = 8.5 Hz, 2 H), 2.40 (s, 3 H). 13C NMR (125 MHz, CDCl3): δ = 158.4, 141.9, 139.5, 138.6, 134.7, 129.3 (2 C), 126.7 (2 C), 125.7, 118.4, 21.5. MS: m/z = 247, 168, 153, 141, 115, 83.
21
3-Methoxy-4′′-methyl[1,1′:3′,1′′]terphenyl(6).
1H NMR (500 MHz, CDCl3): δ = 7.77 (br s, 1 H), 7.51-7.54 (m, 4 H), 7.45 (t, J = 7.5 Hz, 1 H), 7.34 (t, J = 7.5 Hz, 1 H), 7.20-7.24 (m, 3 H), 7.16 (t, J = 2.0 Hz, 1 H), 6.89 (dd, J = 7.5, 2.0 Hz, 1 H), 3.81 (s, 3 H), 2.37 (s, 3 H). 13C NMR (125 MHz, CDCl3): δ = 159.7, 142.6, 141.4 (2 C), 138.0, 136.9, 129.5, 129.3, 128.9, 126.9 (2 C), 125.8, 125.7, 125.6, 119.6 (2 C), 112.9, 112.6, 55.3, 21.2. MS: m/z = 274, 215, 137, 115, 101.
22
2-(3-Methoxyphenyl)-6-(4-methylphenyl)pyridine(7).
1H NMR (500 MHz, CDCl3): δ = 8.03 (d, J = 8.0 Hz, 2 H), 7.76 (t, J = 2.5 Hz, 1 H), 7.70 (t, J = 8.0 Hz, 1 H), 7.67 (br d, J = 8.0 Hz, 1 H), 7.59 (t, J = 7.5 Hz, 2 H), 7.37 (t, J = 8.0 Hz, 1 H), 7.26 (d, J = 8.0 Hz, 2 H), 6.95 (dd, J = 7.5, 2.5 Hz, 1 H), 3.86 (s, 3 H), 2.38 (s, 3 H). 13C NMR (125 MHz, CDCl3): δ = 159.7, 156.4, 156.1, 140.8, 138.6, 137.0, 136.4, 129.3, 129.1, 126.6, 119.2, 118.2, 114.4, 112.5, 55.3, 21.4. MS: m/z = 274, 245, 137.