References
- 1
Saxton JE.
The Chemistry of Heterocyclic Compounds
Part IV, Vol. 25:
Wiley;
New York:
1983.
-
3a
Bartoli G.
Palmieri G.
Bosco M.
Dalpozzo R.
Tetrahedron Lett.
1989,
30:
2129
-
3b
Heath-Brown B.
Philpott PG.
J. Chem. Soc.
1965,
7185
-
3c
McKittrick B.
Failli A.
Steffan RJ.
Soll RM.
J. Heterocycl. Chem.
1990,
27:
2151
-
3d
Clark RD.
Repke DB.
Heterocycles
1984,
22:
195
- 4 Review on the use of transition metals in the synthesis and functionalisation of indoles: Hegedus LS.
Angew. Chem., Int. Ed. Engl.
1988,
27:
1113
-
5a This article gives a very comprehensive overview of the challenges faced in the synthesis of 7-substituted indoles: Ezquerra J.
Pedregal C.
Lamas C.
J. Org. Chem.
1996,
61:
5804 ; and references cited therein
-
5b
Rodriguez AL.
Koradin C.
Dohle W.
Knochel P.
Angew. Chem. Int. Ed.
2000,
39:
2488 ; and references cited therein
-
5c
Koradin C.
Dohle W.
Rodriguez AL.
Schmid B.
Knochel P.
Tetrahedron
2003,
59:
1571
-
It is possible to functionalise the 3-position in situ, but it implies concomitant substitution at the 2-position:
-
6a
Arcadi A.
Cacchi S.
Carcinelli V.
Marinelli F.
Tetrahedron
1994,
50:
437
-
6b
Arcadi A.
Cacchi S.
Marinelli F.
Tetrahedron Lett.
1992,
33:
3915
- 7
Larock RC.
Yum EK.
Refvik MD.
J. Org. Chem.
1998,
63:
7652
- 8
Satoh M.
Miyaura N.
Suzuki A.
Synthesis
1987,
373
-
9a
Odle R.
Blevins B.
Ratcliff M.
Hegedus LS.
J. Org. Chem.
1980,
45:
2709
-
9b See also: Yang S.
Chung W.
Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem.
1999,
38:
897
- 10
Hartung CG.
Fecher A.
Chapell B.
Snieckus V.
Org. Lett.
2003,
5:
1899
-
11a
Somei M.
Saida Y.
Heterocycles
1985,
23:
3113
-
11b
Somei M.
Yamada F.
Hamada H.
Kawasaki T.
Heterocycles
1989,
29:
643
- 12
Iwao M.
Heterocycles
1994,
38:
45
- 13 A similar strategy has previously been reported: Macor JE.
Ogilvie RJ.
Wythes MJ.
Tetrahedron Lett.
1996,
37:
4289
-
15a
Jeffery T.
David M.
Tetrahedron Lett.
1998,
39:
5751
-
15b
Jeffery T.
Tetrahedron
1996,
52:
10113
-
Reviews:
-
15c
De Meijere A.
Meyer FE.
Angew. Chem., Int. Ed. Engl.
1994,
33:
2379
-
15d
Jeffery T. In Advances in Metal-Organic Chemistry
Vol. 5:
Liebeskind LS.
JAI Press;
Greenwich CT:
1996.
p.153-260
- 16
Gardiner JM.
Loyns CR.
Schwalbe CH.
Barrett GC.
Lowe PR.
Tetrahedron
1995,
51:
4101 ; and references therein
-
17a
Bosch J.
Roca T.
Armengol M.
Fernandez-Forner D.
Tetrahedron
2001,
57:
1041
-
17b
See also ref. 13.
-
19a
Hegedus LS.
Mulhern TA.
Mori A.
J. Org. Chem.
1985,
50:
4282
-
19b
See also ref. 9b.
- 20
Sakamoto T.
Kondo Y.
Uchiyama M.
Yamanaka H.
J. Chem. Soc., Perkin Trans. 1
1993,
1941
- 21 For a recent synthesis of 7-hydroxyindole see: Lerman L.
Weinstock-Rosin M.
Nudelman A.
Synthesis
2004,
3043
2 A search for the indole core in WDI database retrieved more than 3700 hits. See also ref. 5.
14 Aniline 2 is also commercially available from Maybridge.
18 The NOE experiment proved that the stereochemistry of the exocyclic double bond is as shown in Scheme
[3]
.
22 Removal of the TFA proved more difficult than in the case of amide 11 and was not complete after 2 d using similar conditions (deprotection of 11 takes 15 min at r.t.). We therefore did not attempt the Heck cyclisation on the unprotected aniline.
23
Typical Procedure.
To a solution of methyl 3-bromo-4-[(2E,Z)-2-buten-1-yl(trifluoroacetyl)amino]-5-[(phenylmethyl)oxy]benzoate (20, 12.3 g, 25.3 mmol, 1 equiv) in DMF (150 mL) were added Na2CO3 (6.7 g, 63.3 mmol, 2.5 equiv), Bu4NCl (7.7 g, 27.8 mmol, 1.1 equiv) and Pd(OAc)2 (570 mg, 2.53 mmol, 0.1 equiv) and the resulting mixture was stirred under nitrogen at 100 °C for 2 h then cooled to r.t. and concentrated in vacuo. The residue was partitioned between EtOAc and H2O and the layers were separated. The aqueous phase was extracted with EtOAc and the combined organic phases were washed with H2O and brine, dried over MgSO4 and concentrated in vacuo. Purification of the residue by flash chromatography on silica gel (iso-hexane-EtOAc, 9:1 to 3:1) gave methyl 3-ethyl-7-[(phenylmethyl)oxy]-1H-indole-5-carboxylate (21, 6.7 g, 86%) as a white solid; mp 96-98 °C. MS (ES): m/z = 310.0 [M + H]+. 1H (400 MHz, CDCl3): δ = 1.33 (t, 3 H, J = 7.2 Hz), 2.79 (q, 2 H, J = 7.2 Hz), 3.93 (s, 3 H), 5.23 (s, 2 H), 6.98 (s, 1 H), 7.31-7.51 (m, 6 H), 8.07 (s, 1 H), 8.43 (br s, 1 H). 13C (100.6 MHz, CDCl3): δ = 14.6, 18.3, 52.0, 70.5, 103.6, 115.9, 120.8, 121.2, 121.7, 128.1, 128.2, 128.3, 128.7, 129.8, 136.7, 144.8, 168.4. MS: m/z calcd for C19H20NO3: 310.14377; found: 310.14372.