Synlett
DOI: 10.1055/a-2406-3243
synpacts

Recent Progress in (3+3) Cycloadditions of Bicyclobutanes to Access Bicyclo[3.1.1]heptane Derivatives

Jian-Jun Feng
This work was supported by the Fundamental Research Funds for the Central Universities, China.


Dedicated to Professor Junliang Zhang on the occasion of his 50th birthday.

Abstract

The synthesis of bicyclo[3.1.1]heptane (BCHeps) derivatives, which serve as three-dimensional (3D) bioisosteres of benzenes and are the core skeleton of several terpene natural products, is garnering growing interest. The (3+3) cycloadditions of bicyclobutanes (BCBs) represent an attractive method for efficiently accessing (hetero)BCHep skeletons with 100% atom economy. Herein, we give a brief summary of recent achievements in this approach for the synthesis of diverse BCHep derivatives, emphasizing our recent progress in the initial palladium-catalyzed (3+3) cycloadditions of bicyclobutanes with vinyl oxiranes.

1 Introduction

2 Radical (3+3) Cycloaddition Reaction

3 Polar (3+3) Cycloaddition Reaction

4 Palladium-Catalyzed Enantioselective (3+3) Cycloaddition Reaction

5 Conclusion



Publication History

Received: 17 July 2024

Accepted after revision: 28 August 2024

Accepted Manuscript online:
28 August 2024

Article published online:
08 October 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Zhang L, Koreeda M. Org. Lett. 2004; 6: 537
    • 1b Gershenzon J, Dudareva N. Nat. Chem. Biol. 2007; 3: 408
    • 1c Zhao L.-Q, Luo Y.-M. Guangxi Plant 2007; 27: 272
    • 1d Hida T, Mitsumori S, Honma T, Hiramatsu Y, Hashizume H, Okada T, Kakinuma M, Kawata K, Oda K, Hasegawa A, Masui T, Nogusa H. Org. Process Res. Dev. 2009; 13: 1413
    • 1e Bideau FL, Kousara M, Chen L, Wei L, Dumas F. Chem. Rev. 2017; 117: 6110
    • 1f Upshur MA, Vega MM, Bé AG, Chase HM, Zhang Y, Tuladhar A, Chase ZA, Fu L, Ebben CJ, Wang Z, Martin ST, Geiger FM, Thomson RJ. Chem. Sci. 2019; 10: 8390
    • 1g Wang Y.-C, Cui C, Dai M. Angew. Chem. Int. Ed. 2021; 60: 24828
    • 1h Allenspach M, Steuer C. Phytochemistry 2021; 190: 112857
    • 1i Eggert A, Schuppe KT, Fuchs HL. S, Brönstrup M, Kalesse M. Org. Lett. 2024; 26: 2893
    • 2a Lovering F, Bikker J, Humblet C. J. Med. Chem. 2009; 52: 6752
    • 2b Lovering F. MedChemComm 2013; 4: 515
    • 2c Mykhailiuk PK. Org. Biomol. Chem. 2019; 17: 2839
    • 2d Tsien J, Hu C, Merchant RR, Qin T. Nat. Rev. Chem. 2024; 8: 605
    • 3a Frank N, Nugent J, Shire BR, Pickford HD, Rabe P, Sterling AJ, Zarganes-Tzitzikas T, Grimes T, Thompson AL, Smith RC, Schofield CJ, Brennan PE, Duarte F, Anderson EA. Nature 2022; 611: 721
    • 3b Iida T, Kanazawa J, Matsunaga T, Miyamoto K, Hirano K, Uchiyama M. J. Am. Chem. Soc. 2022; 144: 21848
    • 3c Dibchak D, Snisarenko M, Mishuk A, Shablykin O, Bortnichuk L, Klymenko-Ulianov O, Kheylik Y, Sadkova IV, Rzepa HS, Mykhailiuk PK. Angew. Chem. Int. Ed. 2023; 62: e202304246
    • 3d Revie RI, Whitaker BJ, Paul B, Smith RC, Anderson EA. Org. Lett. 2024; 26: 2843
    • 4a Jo H, Fitzgerald ME, Winkler JD. Org. Lett. 2009; 11: 1685
    • 4b Han Y.-P, Song X.-R, Qiu Y.-F, Li X.-S, Zhang H.-R, Zhu X.-Y, Liu X.-Y, Liang Y.-M. Org. Lett. 2016; 18: 3866
    • 4c Nada T, Yoneshige Y, Ii Y, Matsumoto T, Fujioka H, Shuto S, Arisawa M. ACS Catal. 2016; 6: 3168
    • 5a Wiberg KB, Lampman GM, Ciula RP, Connor DS, Schertler P, Lavanish J. Tetrahedron 1965; 21: 2749
    • 5b Walczak MA. A, Krainz T, Wipf P. Acc. Chem. Res. 2015; 48: 1149
    • 5c Fawcett A. Pure Appl. Chem. 2020; 92: 751
    • 5d Turkowska J, Durka J, Gryko D. Chem. Commun. 2020; 56: 5718
    • 5e Kelly CB, Milligan JA, Tilley LJ, Sodano TM. Chem. Sci. 2022; 13: 11721
    • 5f Golfmann M, Walker JC. L. Commun. Chem. 2023; 6: 9
    • 5g Hu Q.-Q, Chen J, Yang Y, Yang H, Zhou L. Tetrahedron Chem 2024; 9: 100070
    • 5h Sujansky SJ, Ma X. Asian J. Org. Chem. 2024; 13: e202400045
    • 6a Bellotti P, Glorius F. J. Am. Chem. Soc. 2023; 145: 20716
    • 6b Cuadros S, Paut J, Anselmi E, Dagousset G, Magnier E, Dell’Amico L. Angew. Chem. Int. Ed. 2024; 63: e202317333
    • 7a Kleinmans R, Pinkert T, Dutta S, Paulisch TO, Keum H, Daniliuc CG, Glorius F. Nature 2022; 605: 477
    • 7b Guo R, Chang Y.-C, Herter L, Salome C, Braley SE, Fessard TC, Brown MK. J. Am. Chem. Soc. 2022; 144: 7988
  • 8 Zheng Y, Huang W, Dhungana RK, Granados A, Keess S, Makvandi M, Molander GA. J. Am. Chem. Soc. 2022; 144: 23685
  • 9 Yu T, Yang J, Wang Z, Ding Z, Xu M, Wen J, Xu L, Li P. J. Am. Chem. Soc. 2023; 145: 4304
  • 10 Liu Y, Lin S, Ding Z, Li Y, Tang Y.-J, Xue J.-H, Li Q, Li P, Wang H. ChemRxiv 2024; preprint DOI: 10.26434/chemrxiv-2024-n3wlw.
  • 11 Lin Z, Ren H, Lin X, Yu X, Zheng J. J. Am. Chem. Soc. 2024; 146: 18565
  • 12 Nguyen TV. T, Bossonnet A, Wodrich MD, Waser J. J. Am. Chem. Soc. 2023; 145: 25411
  • 13 Dhake K, Woelk KJ, Becica J, Un A, Jenny SE, Leitch DC. Angew. Chem. Int. Ed. 2022; 61: e202204719
    • 14a Ni D, Hu S, Tan X, Yu Y, Li Z, Deng L. Angew. Chem. Int. Ed. 2023; 62: e202308606
    • 14b Radhoff N, Daniliuc CG, Studer A. Angew. Chem. Int. Ed. 2023; 62: e202304771
    • 14c Nicolai S, Waser J. Chem. Sci. 2024; 15: 10823
    • 14d Yang L, Wang H, Lang M, Wang J, Peng S. Org. Lett. 2024; 26: 4104
    • 14e Hu Q.-Q, Wang L.-Y, Chen X.-H, Geng Z.-X, Chen J, Zhou L. Angew. Chem. Int. Ed. 2024; 63: e202405781
  • 15 Zhang J, Su J.-Y, Zheng H, Li H, Deng W.-P. Angew. Chem. Int. Ed. 2024; 63: 202318476
  • 16 Xiao Y, Wu F, Tang L, Zhang X, Wei M, Wang G, Feng J.-J. Angew. Chem. Int. Ed. 2024; 63: e202408578
  • 17 Liang Y, Nematswerani R, Daniliuc CG, Glorius F. Angew. Chem. Int. Ed. 2024; 63: e202402730
    • 18a Levterov VV, Panasyuk Y, Pivnytska VO, Mykhailiuk PK. Angew. Chem. Int. Ed. 2020; 59: 7161
    • 18b Denisenko A, Garbuz P, Voloshchuk NM, Holota Y, AlMaali G, Borysko P, Mykhailiuk PK. Nat. Chem. 2023; 15: 1155
    • 19a Liang Y, Nematswerani R, Daniliuc CG, Glorius F. J. Am. Chem. Soc. 2022; 144: 20207
    • 19b Liang Y, Paulus F, Daniliuc CG, Glorius F. Angew. Chem. Int. Ed. 2023; 62: e202305043
    • 20a Tang L, Xiao Y, Wu F, Xu T.-T, Feng J.-J. Angew. Chem. Int. Ed. 2023; 62: e202310066
    • 20b Wang J.-J, Tang L, Xiao Y, Wu W.-B, Feng J.-J. Angew. Chem. Int. Ed. 2024; 63: e202405222
    • 20c Gao X.-Y, Tang L, Zhang X, Feng J.-J. Chem. Sci. 2024; 15: 13942
  • 21 Feng J.-J, Zhang J. J. Am. Chem. Soc. 2011; 133: 7304
    • 22a Trost BM, Sudhakar AR. J. Am. Chem. Soc. 1987; 109: 3792
    • 22b Ma C, Huang Y, Zhao Y. ACS Catal. 2016; 6: 6408
    • 22c Suo J.-J, Du J, Liu Q.-R, Chen D, Ding C.-H, Peng Q, Hou X.-L. Org. Lett. 2017; 19: 6658
    • 22d Cheng Q, Zhang H.-J, Yue W.-J, You S.-L. Chem 2017; 3: 428
    • 22e He J, Chen Z, Li W, Low K.-H, Chiu P. Angew. Chem. Int. Ed. 2018; 57: 5253
    • 22f Liu J, Yu L, Zheng C, Zhao G. Angew. Chem. Int. Ed. 2021; 60: 23641
    • 22g Peng Y, Huo X, Luo Y, Wu L, Zhang W. Angew. Chem. Int. Ed. 2021; 60: 24941
    • 22h Li M, Liu Y, Zhang YJ. Org. Lett. 2022; 24: 6716
    • 22i Fan T, Song J, Gong L.-Z. Angew. Chem. Int. Ed. 2022; 61: e202201678
    • 23a Ghorai D, Tóth BL, Lanzi M, Kleij AW. Acc. Chem. Res. 2024; 57: 726
    • 23b Guo W, Martínez-Rodríguez L, Kuniyil R, Martin E, Escudero-Adán EC, Maseras F, Kleij AW. J. Am. Chem. Soc. 2016; 138: 11970
    • 24a Zhou J.-L, Xiao Y, He L, Gao X.-Y, Yang X.-C, Wu W.-B, Wang G, Zhang J, Feng J.-J. J. Am. Chem. Soc. 2024; 146: 19621
    • 24b CCDC 2330999 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
    • 25a Dierkes P, van Leeuwen PW. N. M. J. Chem. Soc., Dalton Trans. 1999; 1519
    • 25b Birkholz M.-N, Freixa Z, van Leeuwen PW. N. M. Chem. Soc. Rev. 2009; 38: 1099
  • 26 Cairncross A, Blanchard EP. Jr. J. Am. Chem. Soc. 1966; 88: 496
    • 27a Denisenko A, Garbuz P, Makovetska Y, Shablykin O, Lesyk D, Al-Maali G, Korzh R, Sadkova IV, Mykhailiuk PK. Chem. Sci. 2023; 14: 14092
    • 27b Reinhold M, Steinebach J, Golz C, Walker JC. L. Chem. Sci. 2023; 14: 9885
    • 27c Levterov VV, Panasiuk Y, Shablykin O, Stashkevych O, Sahun K, Rassokhin A, Sadkova I, Lesyk D, Anisiforova A, Holota Y, Borysko P, Bodenchuk I, Voloshchuk NM, Mykhailiuk PK. Angew. Chem. Int. Ed. 2024; 63: e202319831
  • 28 de Robichon M, Kratz T, Beyer F, Zuber J, Merten C, Bach T. J. Am. Chem. Soc. 2023; 145: 24466
  • 29 Fu Q, Cao S, Wang J, Lv X, Wang H, Zhao X, Jiang Z. J. Am. Chem. Soc. 2024; 146: 8372
    • 30a Frank N, Nugent J, Shire BR, Pickford HD, Rabe P, Sterling AJ, Zarganes-Tzitzikas T, Grimes T, Thompson AL, Smith RC, Schofield CJ, Brennan PE, Duarte F, Anderson EA. Nature 2022; 611: 721
    • 30b Revie RI, Whitaker BJ, Paul B, Smith RC, Anderson EA. Org. Lett. 2024; 26: 2843
  • 31 Iida T, Kanazawa J, Matsunaga T, Miyamoto K, Hirano K, Uchiyama M. J. Am. Chem. Soc. 2022; 144: 21848