Subscribe to RSS
DOI: 10.1055/a-2456-4566
Investigating the Photoactivity of Low-Valent Zirconium Catalyst in Ether Activation
J.Z. thanks the National Natural Science Foundation of China (22301076) for funding support.
Abstract
The cross-coupling of two distinct C(sp3 )–O bonds provides a highly valuable pathway for the construction of C(sp3 )–C(sp3 ) bonds, but it remains underdeveloped. Recently, we reported an innovative photoinduced Zr-catalyzed carbomagnesiation for the reductive coupling of ethers with high cross-selectivity. Mechanistic investigation reveals that photoexcitation of low-valent zirconocene facilitates the activation of C(sp3 )–O bonds of benzylic ethers. This leads to the formation of functionalized benzylic Grignard reagents for downstream coupling with aliphatic ethers through an SN2-like pathway.
1 Introduction
2 Concept of Our Design on this Work
3 Photoinduced Zr-Catalyzed Cross-Coupling of Ethers
4 Photoinduced Zr-Catalyzed Cross-Coupling of Benzylic Magnesium Alkoxide with Ethers
5 Our Methods for Mechanism Investigation
6 Conclusion
Publication History
Received: 15 August 2024
Accepted after revision: 29 October 2024
Accepted Manuscript online:
29 October 2024
Article published online:
10 December 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Goldfogel MJ, Huang L, Weix DJ. Nickel Catalysis in Organic Synthesis: Methods and Reactions, Vol. 9. Ogoshi S. Wiley-VCH; Weinheim: 2020: 183-221
- 2 Lin Q, Spielvogel EH, Diao T. Chem 2023; 9: 1295
- 3 Shu XZ, Pang X. Science of Synthesis: Base-Metal Catalysis 1, Vol. 1. Yoshikai N. Thieme; Stuttgart: 2022: 403
- 4 Yi L, Ji T, Chen KQ, Chen XY, Rueping M. CCS Chem. 2021; 4
- 5 Zhang W, Lu L, Zhang W, Wang Y, Ware SD, Mondragon J, Rein J, Strotman N, Lehnherr D, See KA, Lin S. Nature 2022; 604: 292
- 6 Fu H, Cao J, Qiao T, Qi Y, Charnock SJ, Garfinkle S, Hyster TK. Nature 2022; 610: 302
- 7 Bera S, Mao R, Hu X. Nat. Chem. 2021; 13: 270
- 8 Zhou J, Wang D, Xu W, Hu Z, Xu T. J. Am. Chem. Soc. 2023; 145: 2081
- 9 Dongbang S, Doyle AG. J. Am. Chem. Soc. 2022; 144: 20067
- 10 Kang K, Weix DJ. Org. Lett. 2022; 24: 2853
- 11 Endo K, Ohkubo T, Ishioka T, Shibata T. J. Org. Chem. 2012; 77: 4826
- 12 Kranthikumar R. Organometallics 2022; 41: 667
- 13 Lyon WL, MacMillan DW. C. J. Am. Chem. Soc. 2023; 145: 7736
- 14 Gao M.-Y, Gosmini C. Org. Lett. 2023; 25: 7689
- 15 Cornella J, Zarate C, Martin R. Chem. Soc. Rev. 2014; 43: 8081
- 16 Romano C, Talavera L, Gómez-Bengoa E, Martin R. J. Am. Chem. Soc. 2022; 144: 11558
- 17 Guo P, Wang K, Jin W.-J, Xie H, Qi L, Liu X.-Y, Shu X.-Z. J. Am. Chem. Soc. 2021; 143: 513
- 18 Zhuo J, Zhu C, Wu J, Li Z, Li C. J. Am. Chem. Soc. 2022; 144: 99
- 19 Sakai HA, MacMillan DW. C. J. Am. Chem. Soc. 2022; 144: 6185
- 20 Chin M, Suh SM, Fang Z, Hegg EL, Diao T. ACS Catal. 2022; 12: 2532
- 21 Li W.-D, Wu Y, Li S.-J, Jiang Y.-Q, Li Y.-L, Lan Y, Xia J.-B. J. Am. Chem. Soc. 2022; 144: 8551
- 22 Wu X, Chang Y, Lin S. Chem 2022; 8: 1805
- 23 Suga T, Takahashi Y, Miki C, Ukaji Y. Angew. Chem. Int. Ed. 2022; 61: e202112533
- 24 Hilche T, Younas SL, Gansäuer A, Streuff J. ChemCatChem 2022; 14: e202200530
- 25 Căciuleanu A, Vöhringer F, Fleischer I. Org. Chem. Front. 2023; 10: 2927
- 26 Sumiyama K, Toriumi N, Iwasawa N. Eur. J. Org. Chem. 2021; 2474
- 27 Diéguez HR, López A, Domingo V, Arteaga JF, Dobado JA, Herrador MM, Quílez del Moral JF, Barrero AF. J. Am. Chem. Soc. 2010; 132: 254
- 28 Xie H, Guo J, Wang Y.-Q, Wang K, Guo P, Su P.-F, Wang X, Shu X.-Z. J. Am. Chem. Soc. 2020; 142: 16787
- 29 Gan Y, Zhou J, Li X, Liu J, Liu F, Hong X, Ye B. J. Am. Chem. Soc. 2024; 146: 16753
- 30 Nowlin TE. Business and Technology of the Global Polyethylene Industry: An In-depth Look at the History, Technology, Catalysts, and Modern Commercial Manufacture of Polyethylene and Its Products. Wiley; New York: 2014
- 31 Gao Y, Chen J, Wang Y, Pickens DB, Motta A, Wang QJ, Chung Y.-W, Lohr TL, Marks T. J. Nat. Catal. 2019; 2: 236
- 32 Rosenthal U, Ohff A, Baumann W, Kempe R, Tillack A, Burlakov VV. Angew. Chem. Int. Ed. Engl. 1994; 33: 1605
- 33 Peulecke N, Thomas D, Baumann W, Fischer C, Rosenthal U. Tetrahedron Lett. 1997; 38: 6655
- 34 Beweries T, Hansen S, Kessler M, Klahn M, Rosenthal U. Dalton Trans. 2011; 40: 7689
- 35 Beweries T, Jäger-Fiedler U, Bach M, Burlakov V, Arndt P, Baumann W, Spannenberg A, Rosenthal U. Organometallics 2007; 26: 3000
- 36 Schafer LL, Nitschke JR, Mao SS. H, Liu F.-Q, Harder G, Haufe M, Tilley TD. Chem. Eur. J. 2002; 8: 74
- 37 Hoveyda AH, Xu Z. J. Am. Chem. Soc. 1991; 113: 5079
- 38 Hoveyda AH, Xu Z, Morken JP, Houri AF. J. Am. Chem. Soc. 1991; 113: 8950
- 39 Marek I. J. Chem. Soc., Perkin Trans. 1999; 1: 535
- 40 Marek I, Chinkov N, Levin A. Synlett 2006; 501
- 41 Barluenga J, Álvarez-Rodrigo L, Rodríguez F, Fañanás FJ. Angew. Chem. Int. Ed. 2006; 45: 6362
- 42 Barluenga J, Rodríguez F, Álvarez-Rodrigo L, Fañanás FJ. Chem. Eur. J. 2004; 10: 101
- 43 Shi X, Li S, Wu L. Angew. Chem. Int. Ed. 2019; 58: 16167
- 44 Guo P, Song X, Huang B, Zhang RX, Zhao J. Angew. Chem. Int. Ed. 2024; e202405449