Subscribe to RSS
DOI: 10.1055/a-2493-8106
Synthesis of Chiral Cyclopentadienyl Rhodium Complexes and Their Application in Enantioselective C–H Functionalization Reactions
We thank the National Key R&D Program of China (2021YFA1500100), the National Natural Science Foundation of China (21821002, 92256302 and 22071260) for generous financial support. S.-L.Y. acknowledges the support from New Cornerstone Science Foundation.

Abstract
In recent years, rhodium catalysis has evolved as a powerful tool for chemo- and stereocontrolled syntheses of chiral molecules through C–H functionalization. In particular, chiral cyclopentadienyl rhodium (CpRh) complex-catalyzed asymmetric C–H functionalization reactions have gained ever-increasing attention in organic synthesis. However, the design and synthesis of novel chiral Cp ligands remain challenging due to the difficulty of imparting chiral elements into the Cp moiety. In this account, we introduce our research progress in the syntheses of chiral cyclopentadienyl ligands and their applications in rhodium-catalyzed asymmetric C–H functionalization reactions.
1 Introduction
2 SCpRh-Catalyzed Enantioselective C–H Functionalization Reactions
3 CpmRh-Catalyzed Enantioselective C–H Functionalization Reactions
4 BOCpRh-Catalyzed Enantioselective C–H Functionalization Reactions
5 BCSCpRh-Catalyzed Enantioselective C–H Functionalization Reactions
6 Conclusion
Key words
asymmetric catalysis - cyclopentadienyl ligands - C–H functionalization - rhodium catalysisPublication History
Received: 06 November 2024
Accepted after revision: 29 November 2024
Accepted Manuscript online:
29 November 2024
Article published online:
18 December 2024
© 2024. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Newton CG, Wang S.-G, Oliveira CC, Cramer N. Chem. Rev. 2017; 117: 8908
- 1b Saint-Denis TG, Zhu R.-Y, Chen G, Wu Q.-F, Yu J.-Q. Science 2018; 359: eaao4798
- 1c Loup J, Dhawa U, Pesciaioli F, Wencel-Delord J, Ackermann L. Angew. Chem. Int. Ed. 2019; 58: 12803
- 1d Woźniak Ł, Cramer N. Trends Chem. 2019; 1: 471
- 1e Achar TK, Maiti S, Jana S, Maiti D. ACS Catal. 2020; 10: 13748
- 1f Lam NY. S, Wu K, Yu J.-Q. Angew. Chem. Int. Ed. 2021; 60: 15767
- 2a Ye B, Cramer N. Acc. Chem. Res. 2015; 48: 1308
- 2b Newton CG, Kossler D, Cramer N. J. Am. Chem. Soc. 2016; 138: 3935
- 2c Shaaban S, Davies C, Waldmann H. Eur. J. Org. Chem. 2020; 2020: 6512
- 2d Yoshino T, Satake S, Matsunaga S. Chem. Eur. J. 2020; 26: 7346
- 2e Pan C, Yin S.-Y, Gu Q, You S.-L. Org. Biomol. Chem. 2021; 19: 7264
- 2f Yoshino T, Matsunaga S. ACS Catal. 2021; 11: 6455
- 2g Davies C, Shaaban S, Waldmann H. Trends Chem. 2022; 4: 318
- 2h Liu C.-X, Yin S.-Y, Zhao F, Yang H, Feng Z, Gu Q, You S.-L. Chem. Rev. 2023; 123: 10079
- 3a Hyster TK, Knörr L, Ward TR, Rovis T. Science 2012; 338: 500
- 3b Ye B, Cramer N. Science 2012; 338: 504
- 4a Jia Z.-J, Merten C, Gontla R, Daniliuc CG, Antonchick AP, Waldmann H. Angew. Chem. Int. Ed. 2017; 56: 2429
- 4b Trifonova EA, Ankudinov NM, Mikhaylov AA, Chusov DA, Nelyubina YV, Perekalin DS. Angew. Chem. Int. Ed. 2018; 57: 7714
- 4c Guo W, Jiang J, Wang J. Angew. Chem. Int. Ed. 2024; 63: e202400279
- 5 Ye B, Cramer N. J. Am. Chem. Soc. 2013; 135: 636
- 6a Li G, Yan X, Jiang J, Liang H, Zhou C, Wang J. Angew. Chem. Int. Ed. 2020; 59: 22436
- 6b Liang H, Vasamsetty L, Li T, Jiang J, Pang X, Wang J. Chem. Eur. J. 2020; 26: 14546
- 7 Farr CM. B, Kazerouni AM, Park B, Poff CD, Won J, Sharp KR, Baik M.-H, Blakey SB. J. Am. Chem. Soc. 2020; 142: 13996
- 8a Xie J.-H, Zhou Q.-L. Acc. Chem. Res. 2008; 41: 581
- 8b Xie J.-H, Zhou Q.-L. Huaxue Xuebao 2014; 72: 778
- 9 Zheng J, Cui W.-J, Zheng C, You S.-L. J. Am. Chem. Soc. 2016; 138: 5242
- 10 Wu Z.-J, Zhang R, Gu Q, You S.-L. Asian J. Org. Chem. 2021; 10: 1722
- 11 Wu Z, Li M, Gu Q, You S.-L. Org. Lett. 2024; 26: 1501
- 12 Mi R, Ding Z, Yu S, Crabtree RH, Li X. J. Am. Chem. Soc. 2023; 145: 8150
- 13 Zheng J, Wang S.-B, Zheng C, You S.-L. Angew. Chem. Int. Ed. 2017; 56: 4540
- 14 Li T, Zhou C, Yan X, Wang J. Angew. Chem. Int. Ed. 2018; 57: 4048
- 15 Li H, Yan X, Zhang J, Guo W, Jiang J, Wang J. Angew. Chem. Int. Ed. 2019; 58: 6732
- 16 Wang F, Jing J, Zhao Y, Zhu X, Zhang X.-P, Zhao L, Hu P, Deng W.-Q, Li X. Angew. Chem. Int. Ed. 2021; 60: 16628
- 17 Yang C, Shi L, Wang F, Su Y, Xia J.-B, Li F. ACS Catal. 2022; 12: 14194
- 18 Wang Y, Wu Z.-G, Shi F. Chem Catal. 2022; 2: 3077
- 19 Wang Q, Zhang W.-W, Zheng C, Gu Q, You S.-L. J. Am. Chem. Soc. 2021; 143: 114
- 20 Zhang W.-W, Wang Q, Zhang S.-Z, Zheng C, You S.-L. Angew. Chem. Int. Ed. 2023; 62: e202214460
- 21 Zhai H, Lv K, Li J, Wang J, Liu T, Zhao C. J. Am. Chem. Soc. 2024; 146: 29214
- 22 Wang Q, Zhang W.-W, Song H, Wang J, Zheng C, Gu Q, You S.-L. J. Am. Chem. Soc. 2020; 142: 15678
- 23 Zhang W.-W, Liu C.-X, Yang P, Zhang S.-Z, Gu Q, You S.-L. Org. Lett. 2022; 24: 564
- 24a Chu L, Wang X.-C, Moore CE, Rheingold AL, Yu J.-Q. J. Am. Chem. Soc. 2013; 135: 16344
- 24b Chu L, Xiao K.-J, Yu J.-Q. Science 2014; 346: 451
- 25 Zheng D.-S, Zhang W.-W, Gu Q, You S.-L. ACS Catal. 2023; 13: 5127
- 26 Zheng D.-S, Xie P.-P, Zhao F, Zheng C, Gu Q, You S.-L. ACS Catal. 2024; 14: 6009
- 27 Yin S.-Y, Pan C, Zhang W.-W, Liu C.-X, Zhao F, Gu Q, You S.-L. Org. Lett. 2022; 24: 3620
- 28 Zou Y, Wang P, Kong L, Li X. Org. Lett. 2022; 24: 3189
- 29 Wang P, Wu H, Zhang X.-P, Huang G, Crabtree RH, Li X. J. Am. Chem. Soc. 2023; 145: 8417
- 30 Cui W.-J, Wu Z.-J, Gu Q, You S.-L. J. Am. Chem. Soc. 2020; 142: 7379
- 31 Pan C, Yin S.-Y, Wang S.-B, Gu Q, You S.-L. Angew. Chem. Int. Ed. 2021; 60: 15510
- 32 Yang H, Zhang R, Zhang S.-Z, Gu Q, You S.-L. ACS Catal. 2023; 13: 8838
- 33 Guo W, Pang X, Jiang J, Wang J. Org. Lett. 2023; 25: 3823
For selected reviews, see:
For selected reviews, see: