Subscribe to RSS
DOI: 10.1055/a-2589-5178
1,1-Diborylalkanes as Versatile Precursors for Copper-Catalyzed Diastereo- and Enantioselective Allylic Substitution
This work was supported by National Research Foundation of Korea (NRF) grants funded by the Korean government (MSIT) [S. H. Cho: NRF-2022R1A2C3004731 and RS-2023-00219859; J. H. Lee: NRF-2022R1A2C1012021]. This research was also supported by the Bio&Medical Technology Development Program of the National Research Foundation (NRF) funded by the Korean government (MSIT) [RS-2023-00274113]. J. H. Lee thanks the Dongguk University Research Fund of 2024. S. H. Cho thanks the Korea Toray Science Foundation for financial support.

Abstract
While copper-catalyzed asymmetric allylic alkylation has undergone substantial advances, achieving high levels of stereocontrol with hard nucleophiles remains a formidable challenge. We have recently reported an efficient copper-catalyzed regio-, diastereo-, and enantioselective allylic alkylation of allyl bromides using 1,1-diborylalkanes as prochiral hard nucleophiles. This methodology employs CuBr as a catalyst, an (R)-BINOL-derived phosphoramidite as a chiral ligand, and lithium benzoate as a crucial additive, providing enantioenriched homoallylic boronic esters in good yields with excellent stereoselectivity. Our mechanistic investigations revealed that lithium benzoate is the key to facilitating highly selective anti-SN2′-type oxidative addition, offering valuable insights for further development of asymmetric copper catalysis.
1 Introduction
2 Copper-Catalyzed Regio-, Diastereo-, and Enantioselective Allylic Alkylation with 1,1-Diborylalkanes
3 Conclusions and Perspectives
Key words
copper - allylic substitution - chiral organocopper - diastereoselectivity - enantioselectivityPublication History
Received: 12 March 2025
Accepted after revision: 16 April 2025
Accepted Manuscript online:
16 April 2025
Article published online:
13 June 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Hartwig JF, Pouy MJ. Iridium-Catalyzed Allylic Substitution . In Iridium Catalysis . Andersson PG. Springer; Berlin/Heidelberg: 2011: 169
- 1b Hartwig JF, Stanley LM. Acc. Chem. Res. 2010; 43: 1461
- 1c Hoveyda AH, Zhou Y, Shi Y, Brown MK, Wu H, Torker S. Angew. Chem. Int. Ed. 2020; 59: 21304
- 1d Tosatti P, Nelson A, Marsden SP. Org. Biomol. Chem. 2012; 10: 3147
- 2a Trost BM, Crawley ML. Chem. Rev. 2003; 103: 2921
- 2b Trost BM, Van Vranken DL. Chem. Rev. 1996; 96: 395
- 3 Cheng Q, Tu H.-F, Zheng C, Qu J.-P, Helmchen G, You S.-L. Chem. Rev. 2019; 119: 1855
- 4a
Karlström AS. E,
Huerta FF,
Meuzelaar GJ,
Bäckvall J.-E.
Synlett 2001; 923
- 4b van Klaveren M, Persson ES. M, del Villar A, Grove DM, Bäckvall J.-E, van Koten G. Tetrahedron Lett. 1995; 36: 3059
- 5 Dübner F, Knochel P. Angew. Chem. Int. Ed. 1999; 38: 379
- 6a
Alexakis A,
Malan C,
Lea L,
Benhaim C,
Fournioux X.
Synlett 2001; 927
- 6b Malda H, van Zijl AW, Arnold LA, Feringa BL. Org. Lett. 2001; 3: 1169
- 7a Brown MK, Hoveyda AH. J. Am. Chem. Soc. 2008; 130: 12904
- 7b Luchaco-Cullis CA, Mizutani H, Murphy KE, Hoveyda AH. Angew. Chem. Int. Ed. 2001; 40: 1456
- 8 Pérez M, Fañanás-Mastral M, Bos PH, Rudolph A, Harutyunyan SR, Feringa BL. Nat. Chem. 2011; 3: 377
- 9a Gao F, Carr JL, Hoveyda AH. Angew. Chem. Int. Ed. 2012; 51: 6613
- 9b Jung B, Hoveyda AH. J. Am. Chem. Soc. 2012; 134: 1490
- 9c Shi Y, Jung B, Torker S, Hoveyda AH. J. Am. Chem. Soc. 2015; 137: 8948
- 9d Takeda M, Takatsu K, Shintani R, Hayashi T. J. Org. Chem. 2014; 79: 2354
- 10a Hojoh K, Shido Y, Ohmiya H, Sawamura M. Angew. Chem. Int. Ed. 2014; 53: 4954
- 10b Nagao K, Yokobori U, Makida Y, Ohmiya H, Sawamura M. J. Am. Chem. Soc. 2012; 134: 8982
- 10c Ohmiya H, Yokobori U, Makida Y, Sawamura M. J. Am. Chem. Soc. 2010; 132: 2895
- 10d Shido Y, Yoshida M, Tanabe M, Ohmiya H, Sawamura M. J. Am. Chem. Soc. 2012; 134: 18573
- 11a Skotnitzki J, Morozova V, Knochel P. Org. Lett. 2018; 20: 2365
- 11b Kim M, Kim G, Kim D, Lee JH, Cho SH. Beilstein J. Org. Chem. 2025; 21: 639
- 12 Skotnitzki J, Spessert L, Knochel P. Angew. Chem. Int. Ed. 2019; 58: 1509
- 13 Lee J, Torker S, Hoveyda AH. Angew. Chem. Int. Ed. 2017; 56: 821
- 14a Kim M, Park B, Shin M, Kim S, Kim J, Baik M.-H, Cho SH. J. Am. Chem. Soc. 2021; 143: 1069
- 14b Lee Y, Han S, Cho SH. Acc. Chem. Res. 2021; 54: 3917
- 14c Kim M, Kim G, Kim D, Cho SH. J. Am. Chem. Soc. 2024; 146: 34861
- 15a Harrington-Frost N, Leuser H, Calaza MI, Kneisel FF, Knochel P. Org. Lett. 2003; 5: 2111
- 15b Soorukram D, Knochel P. Org. Lett. 2004; 6: 2409
- 16 Hong K, Liu X, Morken JP. J. Am. Chem. Soc. 2014; 136: 10581
- 17a Osato H, Jones IL, Chen A, Chai CL. L. Org. Lett. 2010; 12: 60
- 17b Usami Y, Takaoka I, Ichikawa H, Horibe Y, Tomiyama S, Ohtsuka M, Imanishi Y, Arimoto M. J. Org. Chem. 2007; 72: 6127
- 19 Guzman-Martinez A, Hoveyda AH. J. Am. Chem. Soc. 2010; 132: 10634
- 20a Hornillos V, Pérez M, Fañanás-Mastral M, Feringa BL. J. Am. Chem. Soc. 2013; 135: 2140
- 20b Li J, Huang J, Wang Y, Liu Y, Zhu Y, You H, Chen F.-E. Chem. Sci. 2024; 15: 8280