Synlett
DOI: 10.1055/s-0043-1775399
synpacts

Enantioselective Synthesis of Cyclobutylboronates

Fushan Yuan
,
Xufei Yan
,
Ying Xia
This work is supported by the National Natural Science Foundation (Grant 22371189, 22001180 and 22301194) and the Thousand Young Talents Program of China (Grant 15-YINGXIA).


Abstract

Cyclobutane derivatives are important motifs in natural products and bioactive compounds. Owing to their inherent strain, the asymmetric synthesis of cyclobutanes remains a formidable challenge. With the development of various stereospecific transformations of alkylboronic esters, chiral cyclobutylboronates are expected to serve as promising synthetic intermediates for accessing chiral cyclobutane derivatives. However, obtaining highly enantioenriched cyclobutylboronates poses a daunting task in the field of organic synthesis. In this context, we highlight recent significant advances in the synthesis of chiral cyclobutylboronates.

1 Introduction

2 Enantioselective Borylation of Cyclobutenes

3 Enantioselective Borylation of Cyclobutanes

4 Other Methods

5 Conclusions



Publication History

Received: 11 July 2024

Accepted after revision: 12 August 2024

Article published online:
10 October 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Dembitsky VM. Phytomedicine 2014; 21: 1559
    • 1b Wager TT, Pettersen BA, Schmidt AW, Spracklin DK, Mente S, Butler TW, Howard H, Lettiere DJ, Rubitski DM, Wong DF, Nedza FM, Nelson FR, Rollema H, Raggon JW, Aubrecht J, Freeman JK, Marcek JM, Cianfrogna J, Cook KW, James LC, Chatman LA, Iredale PA, Banker MJ, Homiski ML, Munzner JB, Chandrasekaran RY. J. Med. Chem. 2011; 54: 7602
    • 1c Yang P, Jia Q, Song S, Huang X. Nat. Prod. Rep. 2023; 40: 1094
    • 2a Wrobleski ML, Reichard GA, Paliwal S, Shah S, Tsui H.-C, Duffy RA, Lachowicz JE, Morgan CA, Varty GB, Shih N.-Y. Bioorg. Med. Chem. Lett. 2006; 16: 3859
    • 2b Stepan AF, Subramanyam C, Efremov IV, Dutra JK, O’Sullivan TJ, DiRico KJ, McDonald WS, Won A, Dorff PH, Nolan CE, Becker SL, Pustilnik LR, Riddell DR, Kauffman GW, Kormos BL, Zhang L, Lu Y, Capetta SH, Green ME, Karki K, Sibley E, Atchison KP, Hallgren AJ, Oborski CE, Robshaw AE, Sneed B, O’Donnell CJ. J. Med. Chem. 2012; 55: 3414
    • 2c Nicolaou KC, Vourloumis D, Totokotsopoulos S, Papakyriakou A, Karsunky H, Fernando H, Gavrilyuk J, Webb D, Stepan AF. ChemMedChem 2016; 11: 31
    • 3a Xu Y, Conner ML, Brown MK. Angew. Chem. Int. Ed. 2015; 54: 11918
    • 3b Großkopf J, Kratz T, Rigotti T, Bach T. Chem. Rev. 2022; 122: 1626
    • 3c Wang M, Lu P. Org. Chem. Front. 2018; 5: 254
    • 3d Chen J, Zhou Q, Fang H, Lu P. Chin. J. Chem. 2022; 40: 1346
    • 4a Mlynarski SN, Schuster CH, Morken JP. Nature 2014; 505: 386
    • 4b Sandford C, Aggarwal VK. Chem. Commun. 2017; 53: 5481
    • 4c Zhao S, Gensch T, Murray B, Niemeyer ZL, Sigman MS, Biscoe MR. Science 2018; 362: 670
    • 4d Lehmann JW, Crouch IT, Blair DJ, Trobe M, Wang P, Li J, Burke MD. Nat. Commun. 2019; 10: 1263
    • 4e Xu N, Liang H, Morken JP. J. Am. Chem. Soc. 2022; 144: 11546
    • 5a Burgess K, Ohlmeyer MJ. Chem. Rev. 1991; 91: 1179
    • 5b Carroll A.-M, O’Sullivan TP, Guiry PJ. Adv. Synth. Catal. 2005; 347: 609
    • 5c Geier SJ, Vogels CM, Melanson JA, Westcott SA. Chem. Soc. Rev. 2022; 51: 8877
  • 6 Guisán-Ceinos M, Parra A, Martín-Heras V, Tortosa M. Angew. Chem. Int. Ed. 2016; 55: 6969
  • 7 Mercer JA. M, Cohen CM, Shuken SR, Wagner AM, Smith MW, Moss FR, Smith MD, Vahala R, Gonzalez-Martinez A, Boxer SG, Burns NZ. J. Am. Chem. Soc. 2016; 138: 15845
  • 8 Clement HA, Boghi M, McDonald RM, Bernier L, Coe JW, Farrell W, Helal CJ, Reese MR, Sach NW, Lee JC, Hall DG. Angew. Chem. Int. Ed. 2019; 58: 18405
  • 9 Cui M, Zhao Z.-Y, Oestreich M. Chem. Eur. J. 2022; 28: e202202163
  • 10 Nguyen K, Clement HA, Bernier L, Coe JW, Farrell W, Helal CJ, Reese MR, Sach NW, Lee JC, Hall DG. ACS Catal. 2021; 11: 404
  • 11 Yuan F, Qi X, Zhao Y, Jia J, Yan X, Hu F, Xia Y. Angew. Chem. Int. Ed. 2024; 63: e202401451
  • 12 Logan KM, Brown MK. Angew. Chem. Int. Ed. 2017; 56: 851
  • 13 Hancock EN, Kuker EL, Tantillo DJ, Brown MK. Angew. Chem. Int. Ed. 2020; 59: 436
  • 14 Nóvoa L, Trulli L, Parra A, Tortosa M. Angew. Chem. Int. Ed. 2021; 60: 11763
  • 15 He J, Shao Q, Wu Q, Yu J.-Q. J. Am. Chem. Soc. 2017; 139: 3344
  • 16 Chen X, Chen L, Zhao H, Gao Q, Shen Z, Xu S. Chin. J. Chem. 2020; 38: 1533
    • 17a Poplata S, Tröster A, Zou Y.-Q, Bach T. Chem. Rev. 2016; 116: 9748
    • 17b Xu Y, Conner ML, Brown MK. Angew. Chem. Int. Ed. 2015; 54: 11918
    • 17c Lee-Ruff E, Mladenova G. Chem. Rev. 2003; 103: 1449
  • 18 Coote SC, Bach T. J. Am. Chem. Soc. 2013; 135: 14948
  • 19 Davenport R, Silvi M, Noble A, Hosni Z, Fey N, Aggarwal VK. Angew. Chem. Int. Ed. 2020; 59: 6525