Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2015; 26(20): 2853-2857
DOI: 10.1055/s-0035-1560810
DOI: 10.1055/s-0035-1560810
letter
Synthesis of Alkyl-Substituted Pyridines by Directed Pd(II)-Catalyzed C–H Activation of Alkanoic Amides
Further Information
Publication History
Received: 07 September 2015
Accepted after revision: 09 October 2015
Publication Date:
16 November 2015 (online)
Abstract
A general alkylation protocol for substituted iodopyridines was developed (32 examples, 44–97% yield). The reaction is based on the Pd(II)-catalyzed C–H activation of 8-aminoquinoline-derived alkanoic amides and it employs a catalyst cocktail of Pd(OAc)2 (10 mol%), NaI (30 mol%), and (BuO)2POOH (20 mol%), with Ag2CO3 as base.
Supporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1560810.
- Supporting Information
-
References and Notes
- 1a Allais C, Grassot J.-M, Rodriguez J, Constantieux T. Chem. Rev. 2014; 114: 10829
- 1b Hill MD. Chem. Eur. J. 2010; 16: 12052
- 1c Bagley MC, Glover C, Merritt EA. Synlett 2007; 2459
- 1d Henry GD. Tetrahedron 2004; 60: 6043
- 2a Rossi R, Bellina F, Lessi M, Manzini C. Adv. Synth. Catal. 2014; 356: 17
- 2b Bull JA, Mousseau JJ, Pelletier G, Charette AB. Chem. Rev. 2012; 112: 2642
- 2c Roger J, Gottumukkala AL, Doucet H. ChemCatChem 2010; 2: 20
- 2d Schlosser M, Mongin F. Chem. Soc. Rev. 2007; 36: 1161
- 2e Fairlamb IJ. S. Chem. Soc. Rev. 2007; 36: 1036
- 2f Schröter S, Stock C, Bach T. Tetrahedron 2005; 61: 2245
- 3a Baumann M, Baxendale IR. Beilstein J. Org. Chem. 2013; 9: 2265
- 3b Michael JP. Nat. Prod. Rep. 2005; 22: 627
- 3c Liao LM. Alkaloids 2003; 60: 287
- 4a Ashok P, Ganguly S, Murugesan S. Drug Discov. Today 2014; 19: 1781
- 4b Ashok P, Ganguly S, Murugesan S. Mini-Rev. Med. Chem. 2013; 13: 1778
- 4c Cao R, Peng W, Wang Z, Xu A. Curr. Med. Chem. 2007; 14: 479
- 5a Dastbaravardeh N, Christakakou M, Haider M, Schnürch M. Synthesis 2014; 46: 1421
- 5b Giri R, Thapa S, Kafle A. Adv. Synth. Catal. 2014; 356: 1395
- 5c Engle KM, Mei T.-S, Wasa M, Yu J.-Q. Acc. Chem. Res. 2012; 45: 788
- 5d Wencel-Delord J, Dröge T, Liu F, Glorius F. Chem. Soc. Rev. 2011; 40: 4740
- 5e Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
- 6a Zaitsev VG, Shabashov D, Daugulis O. J. Am. Chem. Soc. 2005; 127: 13154
- 6b Shabashov D, Daugulis O. J. Am. Chem. Soc. 2010; 132: 3965
- 6c Daugulis O, Roane J, Tran LD. Acc. Chem. Res. 2015; 48: 1053
- 7a Reddy BV. S, Reddy LR, Corey EJ. Org. Lett. 2006; 8: 3391
- 7b Feng Y, Wang Y, Landgraf B, Liu S, Chen G. Org. Lett. 2010; 12: 3414
- 7c Ano Y, Tobisu M, Chatani N. J. Am. Chem. Soc. 2011; 133: 12984
- 7d Chen K, Hu F, Zhang S.-Q, Shi B.-F. Chem. Sci. 2013; 4: 3906
- 7e Pan F, Shen P.-X, Zhang L.-S, Wang X, Shi Z.-J. Org. Lett. 2013; 15: 4758
- 7f Zhang S.-Y, Li Q, He G, Nack WA, Chen G. J. Am. Chem. Soc. 2013; 135: 12135
- 7g He G, Zhang S.-Y, Nack WA, Li Q, Chen G. Angew. Chem. Int. Ed. 2013; 52: 11124
- 7h Sun W.-W, Cao P, Mei R.-Q, Li Y, Ma Y.-L, Wu B. Org. Lett. 2014; 16: 480
- 7i Al-Amin M, Arisawa M, Shuto S, Ano Y, Tobisu M, Chatani N. Adv. Synth. Catal. 2014; 356: 1631
- 7j Wei Y, Tang H, Cong X, Rao B, Wu C, Zeng X. Org. Lett. 2014; 16: 2248
- 7k Parella R, Babu SA. Synlett 2014; 25: 1395
- 7l Chen K, Shi B.-F. Angew. Chem. Int. Ed. 2014; 53: 11950
- 7m Shan G, Huang G, Rao Y. Org. Biomol. Chem. 2015; 13: 697
- 7n Yan S.-B, Zhang S, Duan W.-L. Org. Lett. 2015; 17: 2458
- 8a Giri R, Chen X, Yu J.-Q. Angew. Chem. Int. Ed. 2005; 44: 2112
- 8b Wasa M, Engle KM, Yu J.-Q. J. Am. Chem. Soc. 2009; 131: 9886
- 8c He G, Zhao Y, Zhang S, Lu C, Chen G. J. Am. Chem. Soc. 2012; 134: 3
- 8d Rodríguez N, Romero-Revilla JA, Fernández-Ibáñez MÁ, Carretero JC. Chem. Sci. 2013; 4: 175
- 8e Chen F.-J, Zhao S, Hu F, Chen K, Zhang Q, Zhang S.-Q, Shi B.-F. Chem. Sci. 2013; 4: 4187
- 8f Zhang Q, Chen K, Shi B.-F. Synlett 2014; 25: 1941
- 8g Cui W, Chen S, Wu J.-Q, Zhao X. Org. Lett. 2014; 16: 4288
- 8h Wang C, Chen C, Zhang J, Han J, Wang Q, Guo K, Liu P, Guan M, Yao Y, Zhao Y. Angew. Chem. Int. Ed. 2014; 53: 9884
- 8i McNally A, Haffemayer B, Collins BL, Gaunt MJ. Nature 2014; 510: 129
- 8j Wang C, Han J, Zhao Y. Synlett 2015; 26: 997
- 8k Zhang Q, Yin X.-S, Chen K, Zhang S.-Q, Shi B.-F. J. Am. Chem. Soc. 2015; 137: 8219
- 9a Höke T, Herdtweck E, Bach T. Chem. Commun. 2013; 49: 8009
- 9b Wamser M, Bach T. Synlett 2014; 25: 1081
- 9c Nitsch D, Pöthig A, Bach T. Synlett 2014; 25: 2434
- 9d Frost JR, Huber SM, Breitenlechner S, Bannwarth C, Bach T. Angew. Chem. Int. Ed. 2015; 54: 691
- 10a Affron DP, Davis OA, Bull JA. Org. Lett. 2014; 16: 4956
- 10b Feng R, Wang B, Liu Y, Liu Z, Zhang Y. Eur. J. Org. Chem. 2015; 142
- 10c Parella R, Babu SA. J. Org. Chem. 2015; 80: 2339
- 11 Liu Y.-J, Xu H, Kong W.-J, Shang M, Dai H.-X, Yu J.-Q. Nature 2014; 515: 389 ; and references cited therein
- 12a Zhang S.-Y, He G, Nack WA, Zhao Y, Li Q, Chen G. J. Am. Chem. Soc. 2013; 135: 2124
- 12b Zhang SY, Li Q, He G, Nack WA, Chen G. J. Am. Chem. Soc. 2015; 137: 531
- 13 Typical Procedure: A flame-dried pressure Schlenk tube was charged with NaI (22.5 mg, 0.15 mmol), butanoic amide 1a (161 mg, 0.75 mmol), 5-bromo-2-iodopyridine (142 mg, 0.5 mmol), Ag2CO3 (207 mg, 0.75 mmol), (BnO)2PO2H (27.8 mg, 0.1 mmol), and Pd(OAc)2 (11.2 mg, 0.05 mmol). Toluene (5.0 mL) and DMA (0.25 mL) were added, then the tube was tightly closed and flushed with argon by three freeze-pump-thaw cycles. The mixture was stirred at 130 °C for 24 h. Subsequently, it was diluted with EtOAc (40 mL) and washed with brine (2 × 20 mL) and water (20 mL). The organic layer was dried over Na2SO4, filtered, and concentrated in vacuo. The crude product was purified by flash chromatography (n-hexane–EtOAc, 3:1). Product 5b (161 mg, 87%) was obtained as a colorless oil. 1H NMR (300 MHz, CDCl3): δ = 9.87 (br s, 1 H), 8.78 (dd, J = 4.2, 1.7 Hz, 1 H), 8.69 (dd, J = 6.6, 2.5 Hz, 1 H), 8.64 (dd, J = 2.4, 0.8 Hz, 1 H), 8.11 (dd, J = 8.3, 1.7 Hz, 1 H), 7.67 (dd, J = 8.3, 2.4 Hz, 1 H), 7.51–7.40 (m, 3 H), 7.15 (dd, J = 8.3, 0.8 Hz, 1 H), 3.58 (app. sextet, J ≅ 7.0 Hz, 1 H), 3.16 (dd, J = 14.5, 8.3 Hz, 1 H), 2.84 (dd, J = 14.5, 6.2 Hz, 1 H), 1.40 (d, J = 7.0 Hz, 3 H). 13C NMR (75 MHz, CDCl3): δ = 170.4, 163.0, 150.4, 148.1, 139.1, 138.2, 136.2, 134.4, 127.8, 127.3, 123.9, 121.5, 121.4, 118.2, 116.3, 44.2, 38.1, 21.3. HRMS: m/z [M + H+] calcd for C18H17BrN3O+: 370.0544; found: 370.0542. IR: 1682, 1522, 1485, 1468 cm–1.
- 14 Steglich W, Kopanski L, Wolf M, Moser M, Tegtmeyer G. Tetrahedron Lett. 1984; 25: 2341
- 15a Novak W, Gerlach H. Liebigs Ann. Chem. 1993; 153
- 15b Bracher F, Hildebrand D. Pharmazie 1995; 50: 182
- 15c Cebrián-Torrejón G, Mackiewicz N, Vázquez-Manrique RP, Fournet A, Figadère B, Nicolas J, Pouponet E. Eur. J. Org. Chem. 2013; 5821
- 16 Kuo P.-C, Damu AG, Leeb K.-H, Wu T.-S. Bioorg. Med. Chem. 2004; 12: 537
- 17a Roggero CM, Giulietti JM, Mulcahy SP. Bioorg. Med. Chem. Lett. 2014; 24: 3549
- 17b Tremmel T, Bracher F. Tetrahedron 2015; 71: 4640; and references cited therein
- 18 Hawkins A, Jakubec P, Ironmonger A, Dixon DJ. Tetrahedron Lett. 2013; 54: 365
- 19 Bracher F, Hildebrand D, Ernst L. Arch. Pharm. 1994; 327: 121
Reviews:
Reviews:
Selected reviews:
For selected work on sp3 C–H functionalization using other directing groups, see:
For recent contributions of our group to the field of sp3 C–H functionalization chemistry, see: